Spelling suggestions: "subject:"gulf off mexico."" "subject:"gulf oof mexico.""
101 |
A three-dimensional biophysical model of light, nutrient, and grazing controls on phytoplankton competition affecting red tide maintenance on the west Florida shelfMilroy, Scott P 01 June 2007 (has links)
A coupled, three-dimensional, time-dependent numerical model of water circulation, spectral light, plankton dynamics, nutrient/CDOM loadings, and zooplankton grazing provided an assessment of the factors affecting the growth and maintenance of red tides on the west Florida shelf (WFS). The coupled biophysical model consisted of state variable quantities for temperature, salinity, horizontal/vertical velocity components, turbulent diffusion, spectral light, colored dissolved organic matter (CDOM), dissolved organic and inorganic carbon, particulate silica, four dissolved inorganic nutrient pools (nitrate, ammonium, phosphate, and silicate), and four phytoplankton groups (diatoms, microflagellates, non-toxic dinoflagellates, and the red tide organism Karenia brevis).
The model also included a complex grazing scheme that utilized thirteen different zooplankton groups to explore the effects of selective herbivory, feeding periodicity, diel vertical migration, fecal pellet egestion, and ammonium/phosphate excretion within a diverse zooplankton community. Over the shelf and slope of the eastern Gulf of Mexico, from the Mississippi River delta to the Florida Keys, four cases of the model were run during August -- November to explore the dynamics of red tide maintenance with respect to: (1) no refuge from grazing for K. brevis; (2) grazer avoidance of K. brevis during CDOM shading; (3) grazer avoidance of K. brevis in Case II waters; and (4) increased grazing stress on K. brevis competitors. NEGOM and ECOHAB data sets during July -- November 1999 were used to establish the initial/boundary conditions and provided validation data for the coupled model as well.
Model results indicate that the red tide of 5.9 x 10 6 cells L-1 witnessed offshore Sarasota, Florida on 07 October 1999 was initiated by an inoculum of K. brevis observed in near-bottom waters above the 30 m isobath offshore Sarasota on 31 August 1999. Flowfields measured at moored ADCPs, observations from AVHRR satellite imagery, and west Florida shelf circulation models indicate that conditions of coastal upwelling existed during the period of bloom development, such that the K. brevis inoculum was delivered to the coast in the bottom Ekman layer. As a shade-adapted species capable of vertical migration, K. brevis cells aggregated near the bottom in order to escape photo-inhibitive light intensities in the overlying water column during the day and harvested the recycled nitrogen excreted by zooplankton grazers.
This concomitant relaxation of light inhibition and nitrogen-limitation ultimately led to the growth and maintenance of the red tide, constrained in near-bottom waters during much of the day and preferentially advected inshore as a result of coastal upwelling. As K. brevis was advected inshore, self-shading, CDOM, and suspended inorganic particulates all contributed to the prevention of photo-inhibitive light intensities that, in combination with the excretion of recycled ammonium, ultimately led to the maintenance of a significant red tide at the coast.
|
102 |
Late Holocene planktic foraminiferal assemblages from Orca Basin: Effects of dissolution on faunal assemblagesPalmer, Denise D 01 June 2006 (has links)
Studies of planktic foraminifers have been, and continue to be, very important to paleoceanographic reconstructions and are dependent on the integrity of the carbonate tests. This study investigates the methods and procedures that can be used to obtain an accurate planktic foraminifer assemblage. Samples from Orca Basin boxcore OB-BC4D were processed and examined to obtain census data on planktic foraminifers. Experimentation of the splitting technique demonstrates the method is acceptable for estimating a planktic foraminifer assemblage. The effects of a sonication step in the processing of the faunal assemblage were also examined and revealed that sonication is not recommended for processing planktic foraminifers for faunal-assemblage analyses. Census data revealed downcore variation in the foraminifer species and intervals of increased dissolution over the last 1000 years.
|
103 |
Sex determination in southern flounder, Paralichthys lethostigma from the Texas Gulf Coast and implications of climate changeMontalvo, Avier José 16 February 2011 (has links)
In marine flatfish of the genus Paralichthys, temperature plays a large role in sex
determination. Thus, global climate change could have significant effects on southern
flounder (Paralichthys lethostigma), a commercially and recreationally important flatfish
whose populations have steadily declined in Texas in the last 25 years. The most
susceptible areas to global climate change are shallow water environments, particularly
estuaries, which serve as essential nursery habitats for juvenile southern flounder. While
in the estuaries, juveniles develop, and sex is determined. Juvenile southern flounder
possess genotypic sex determination; however, the sex of females is highly influenced by
temperature and can result in sex reversal. The temperature-sensitive enzyme complex
responsible for estrogen biosynthesis in vertebrates is aromatase cytochrome P450
(P450arom), a critical component in ovarian differentiation that can be used to measure
presumptive males and females exposed to a gradient of temperatures. This research
identifies that sex is influenced by temperature between 35 and 65 mm total length (TL)
and establishes that increases in temperature from 18 °C during this size range produce
increasingly male skewed sex ratios in southern flounder from Texas. The findings
presented here are critical for optimizing production of females in culture and for
developing stock enhancement programs of southern flounder in Texas. / text
|
104 |
Pore pressure and fracture pressure prediction of deepwater subsalt environment wells in Gulf of MexicoRabinovich, Vladimir M. 05 October 2011 (has links)
There are many complications associated with abnormally high fluid pressures in overpressured formations. Pore pressure can directly influence all parts of operations including drilling, geological studies, completion, and production. Accurate predictions of pore pressure and fracture pressure are vital aspects to the production and completion of safe, time efficient, and cost efficient projects. Knowledge of pressure distribution in the formation can greatly reduce complexities associated with drilling and completing a well.
A three-method pore pressure and fracture pressure study was performed on two prospect deepwater wells located in the Gulf of Mexico. More than thirty offset wells in the greater region were initially analyzed for similarities with the two prospect wells. In the final analysis, only six wells were used to create pore pressure and fracture pressure models due to inconsistencies in similarities or lack of usable data in many of the offset wells. Pore pressure and fracture pressure models were constructed for the offset wells, and then applied and calibrated for the two prospect wells using drilling data such as mud weights, MDTs (Modular Dynamic Testing), and LOTs (Leak-off Test). Three types of pore pressure and fracture pressure models were used in the study: Eaton’s deep resistivity method; Eaton’s acoustic sonic method; and Bower’s interval seismic velocity method.
Pore pressure and fracture pressure prediction was complicated by abnormal pressure in the formation due to undercompaction and seals. Both prospects were located in a deep subsalt environment. Low permeability and traps prevents fluid from escaping as rapidly as pore space compacts thus creating overpressure. Drilling through salt in deep water is expensive and risky. Elevated pore pressure and reduced fracture pressure underneath salt seals can create very tight mud weight windows and cause many drilling problems, as seen in the results of the offset wells’ pore pressure and fracture pressure models.
Results indicate very small pore pressure and fracture pressure windows, or mud weight windows, because of overpressures in the formation caused by such a deep subsalt environment. Many casing points were needed in the final casing design of prospect wells to accommodate the smaller mud weight windows. Pore pressure has the most significant increase immediately below the salt, while the mud weight window remained constant or decreased with depth. The average mud weight window ranged between 1 to 2 pounds per gallon below the salt. / text
|
105 |
Regional structure, stratigraphy, and hydrocarbon potential of the Mexican sector of the Gulf of MexicoRodriguez, Anthony Byron 02 November 2011 (has links)
I have compiled digital seismic and well data over a region of approximately 700,000 km² to better improve the correlation of the Mexican sector of the Gulf of Mexico (MGOM) with the better studied and more explored U.S. sector. I have ~25,000 km of regional 2D lines that were collected by the University of Texas in the 1970's. I have digitized data from published PEMEX data from the MGOM using SEG-Y converter software and incorporated these data into my seismic grid. Using these data, I interpreted and correlated 20 surfaces that range in age from Late Jurassic to Recent. The combined shelf-slope-basin dataset from the MGOM allows for correlation of units from the deepwater MGOM, across into the Mexican Ridges passive margin foldbelt, and onto the Mexican shelf. I have also incorporated seismic data from the offshore Chicxulub crater and correlated units in the Yucatan platform area with the deepwater MGOM. This regional data set indicates that normal, growth faulting linked with downdip toe thrusts and folds of the Mexican Ridges initiated in post-Middle Miocene time and are therefore unrelated to the earlier Paleogene Laramide uplift deformation phase. Shelf-slope-deep basin seismic facies of Eocene and Oligocene units show an influx of clastic materials linked with regional uplift and volcanic events affecting central Mexico during this period. I propose that the deepwater folds of the Mexican Ridges accompanied shelf-edge gravity sliding and normal faulting activated during accelerated Oligo-Miocene uplift, regional volcanic activity, and erosion of the Mexican landmass. Downdip sliding occurred on the seaward-dipping top Cretaceous carbonate unit (7° to 13°) along with overlying horizons that range in dip from 1° to 2°. Shelf-slope-deep basin seismic facies of the Paleocene units around the Yucatan peninsula suggest a sediment-starved and slide-free carbonate margin with a current basinward dip of approximately 12° and significantly greater than those dips observed along the present-day eastern Gulf of Mexico. Based on the seismic interpretations and plate reconstructions, I propose four major tectonosequences fill the Gulf of Mexico basin: 1) A Late Jurassic to Late Cretaceous passive margin phase; 2) a Late Cretaceous to Late Eocene Laramide deformational phase; 3) a Late Eocene to Middle Miocene passive margin phase; and 4) a Late Miocene to Recent Neogene deformational phase. / text
|
106 |
Quantitative seismic geomorphology of a confined channel complex, southern Atwater fold belt, Gulf of Mexico, U.S.A.Morgan, Jessica Leanne 02 November 2011 (has links)
The structures along the Atwater Fold belt form important deep-water hydrocarbon traps in the northern Gulf of Mexico. The purpose of this study is to map and quantify the morphology, sedimentology and architecture of Plio-Pleistocene basin floor fan systems outboard of the Poseidon Minibasin, located along the Atwater deep-water fold belt (mid-Miocene to Pliocene), and apply that information to determine the temporal and spatial nature of the fill and its implications as a reservoir analog. The data set includes ~2200 km sq. of 3D seismic data, along with information from several wells. Wireline logs show the Tertiary age deposits outboard of the Sigsbee Escarpment to be several hundred feet thick, sharp-based, dominantly coarse-grained (sandy) but fining up cycles composed of sandy basin floor fans, mass transport complexes and leveed channels developed in a confined setting within deep-water “valleys.”
The largest valley formed in five main stages: initiating from narrow channel incision, widening through lateral incision and sidewall slumping, straightening, and finally flooding and infilling. The valley system is ~20,000 feet across and ~ 1,400 feet deep, with what look like well-developed levees ranging from 700 to 1300 feet at their thickest point extending ~19000 feet away from the channel. This system is underlain by a ~700 foot thick mass transport complex and overlain by younger, low sinuosity leveed channel systems. Both of these systems appear to have been sourced by large submarine drainages, originating from a shelf edge sediment source system to feed the rugose slope with deep-water channel pathways uninhibited by salt wall inflation at the time of valley deposition.
Major phases of salt thrusting along the southern edge of the Atwater were contemporaneous with the formation of these large, through-going valley system, which appear to be associated with the period of sheet thickening and development of monoclinal basinward dip related to rafted mini-basin docking.
Well log signatures show evidence for armored clay drapes along the valley margins as well as a flattening of lateral accretion packages toward the distal end of the system. The flattening of these packages seems to signal proximity to the fan terminus, which would serve as an important indicator of spatial extent of plays in deep-water. / text
|
107 |
The limpets of the Gulf of California (Patellidae, acmaeidae)Yensen, Nicholas Patrick January 1973 (has links)
No description available.
|
108 |
Multi-term multiple prediction using separated reflections and diffractions combined with curvelet-based subtractionVerschuur, Dirk J., Wang, Deli, Herrmann, Felix J. January 2007 (has links)
The surface-related multiple elimination (SRME) method has proven to be successful on a large number of data cases. Most of the applications are still 2D, as the full 3D implementation is still expensive and under development. However, the earth is a 3D medium, such that 3D effects are difficult to avoid. Most of the 3D effects come from diffractive structures, whereas the specular reflections normally have less of a 3D behavior. By separating the seismic data in a specular reflecting and a diffractive part, multiple prediction can be carried out with these different subsets of the input data, resulting in several categories of predicted multiples. Because each category of predicted multiples can be subtracted from the input data with different adaptation filters, a more flexible SRME procedure is obtained. Based on some initial results from a Gulf of Mexico dataset, the potential of this approach is investigated.
|
109 |
SEISMIC DETECTION AND QUANTIFICATION OF GAS HYDRATES IN ALAMINOS CANYON, GULF OF MEXICODai, Jianchun, Banik, Niranjan, Shelander, Dianna, Bunge, George, Dutta, Nader 07 1900 (has links)
In this paper, we present the results of our recent study of quantitative estimation of gas hydrates in
Alaminos Canyon block 818, Gulf of Mexico. The study was conducted as a part of the JIP Gulf of Mexico
gas hydrates project. Sizable high concentration gas hydrates zones were detected as a result of the study,
with hydrates saturation as high as 80% of the pore space.
Comparison of the seismic prediction with estimation from one available shallow well shows high level of
consistency, adding further to the reliability of the seismic prediction. Based on our findings, multiple wells
are planned for drilling through the high concentration anomaly zones by JIP in the summer of 2008. The
confirmation of our prediction through drilling will lead to the discovery of the first major gas hydrate
accumulation in the Gulf of Mexico.
|
110 |
METHANE HYDRATE RESOURCE ASSESSMENT OF THE OUTER CONTINENTAL SHELF: IN-PLACE GULF OF MEXICO RESULTSFrye, Matthew, Grace, John, Hunt, Jesse, Kaufman, Gordon, Schuenemeyer, John, Shedd, William 07 1900 (has links)
The U.S. Minerals Management Service has completed a preliminary assessment of in-place gas
hydrate resources in the Gulf of Mexico. A probabilistic model built on a mass balance approach
to assessment provides a high degree of spatial resolution and supports detailed mapping. The
model produces a Monte Carlo distribution of in-place resources that ranges from 314 trillion to
974 trillion cubic meters (TCM) with a mean value of 607 TCM. Additional work on
development of a technically recoverable model component is under way.
|
Page generated in 0.0773 seconds