• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 67
  • 23
  • 18
  • 14
  • 8
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 298
  • 54
  • 31
  • 29
  • 23
  • 22
  • 22
  • 22
  • 22
  • 20
  • 19
  • 18
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The effect of gypsum phase components on the rheokinetics of cement paste

Migabo, Willy Mbasha January 2018 (has links)
Thesis (Doctor of Engineering in Civil Engineering)--Cape Peninsula University of Technology, 2018. / Rheological properties of most ordinary Portland cements are dictated by the hydration reactions that their different phases experience. Cement clinker has four main phases with aluminate being the most reactive. Once in contact with water, the aluminate phase reacts rapidly and generally impedes the early hydration of other cement compounds such as calcium silicates that are responsible for the strength of cement systems. Consequently, the obtained matrix is stiff without much strength. Alternatively, calcium sulphate bearing materials are added within the clinker as set regulators of the aluminate phase hydration. For this purpose, natural gypsum is moslty gound with cement clinker as a source of sufficient sulphate, thereby keeping the cement paste plastic for a certain amount of time, allowing the hydration of silicate phases that are responsible for the early and later strength. However, the heat generated within the mill during the grinding process of clinker and gypsum causes a partial dehydration of natural gypsum into hemihydrate. The final ground cement product is thus comprised of two unexpected types of calcium sulphate bearing materials in an unpredictable proportion. Due to the difference in their solubility, the hydration of the aluminate phase can variably be altered which consequently affects the rheokinetics of the cement paste. Currently, the effect of the available amount of hemihydrate and natural gypsum in the cement sulphate phase, on both the hydration and rheology of ordinary Portland cements (OPC), are not well-understood. An ordinary Portland cement clinker was sampled during the production process of CEM I under stable kiln operations at a local cement plant. This was ground without any form of calcium sulphate bearing material and the final product was considered as relatively pure cement clinker. The degree of natural gypsum degeneration was achieved by partially replacing fractions of hemihydrate with those of natural gypsum. Firstly, the individual effect of these calcium sulphate bearing materials on the hydration kinetics was studied by varying their concentrations from 2-7% within the cement system. Secondly, the effect of their mix proportions at an optimum calcium sulphate concentration on cement paste rheokinetics was investigated. This research confirmed the findings of previous investigations relative to the effect of calcium sulphate on the hydration kinetic , giving new insight on the rheokinetics of cement paste with mix proportions of various calcium bearing materials. Results showed that the reaction rates of cement systems with hemihydrate were faster than those with natural gypsum and generally tended to decrease with the increase in their concentrations. Cements with hemihydrate experiencing shorter dormant durations than those with natural gypsum, likely due to the fact that the consumption rate of calcium sulphate was higher in cement systems with hemihydrate than those with natural gypsum. Consequently, before the exhaustion of sulphate ions, cement systems with hemihydrate had higher degrees of hydration and became almost similar thereafter. More ettringite and portlandite were formed in cement systems with hemihydrate as compared to those with natural gypsum. The amount of ettringite increased with the increase in calcium sulphate concentration up to 4% and thereafter remained constant. Conversely, the amount of portlandite decreased with the increase in calcium sulphate and also remained unchanged after 4%. The strength development of the cement microstructure depended on the concentration of hemihydrate within the suspension. The rigidification of the newly formed network was affected at higher hemihydrate fractions. Rheological parameters were more pronounced when the concentration of hemihydrate exceeded 50%. Below this hemihydrate concentration, cements had almost similar flow properties as those with only natural gypsum. Large changes in yield stress values and variation in plastic viscosity values of approximately 50% were observed. The trend of mixes dynamic yield stress were similar to their corresponding strength rate developments. This rheological behaviour was primarily attributed to the morphology change of ettringite that was triggered by the presence of a higher hemihydrate concentration. It was also noticed that physical performances of cement systems depended on their respective microstructure developments.
22

Val av byggproduktionsmetod/ Praktikfall Klammerdamm : Golvgips eller avjämningsmassa

Stojnic Dragan, Lindblad Henrik January 2007 (has links)
<p>This report is about how to decide which method is the most suitable as floor covering at project</p><p>Klammerdamm in the centre of Halmstad. The covering has to be fire resistant and soundproof in</p><p>order to protect the wood structure and stop noise from traveling between apartments. There are</p><p>two possibilities either traditional gypsum board or gypsum-based self leveling underlayment.</p><p>The roads around the construction site are narrow. A regular twenty-five meter long truck has no</p><p>possibility to reach the site. The construction site is small and the storage area is limited. Good</p><p>planning is one condition, among many others, that has to be fulfilled to make this project doable.</p><p>All relevant parameters has been taken into account and analyzed with a decision model.</p>
23

Some characteristics of certain semi-arid soils of southern Arizona with respect to their gypsum requirements

Raslan, Abdul Hamid, 1931- January 1960 (has links)
No description available.
24

Val av byggproduktionsmetod/ Praktikfall Klammerdamm : Golvgips eller avjämningsmassa

Stojnic Dragan, Lindblad Henrik January 2007 (has links)
This report is about how to decide which method is the most suitable as floor covering at project Klammerdamm in the centre of Halmstad. The covering has to be fire resistant and soundproof in order to protect the wood structure and stop noise from traveling between apartments. There are two possibilities either traditional gypsum board or gypsum-based self leveling underlayment. The roads around the construction site are narrow. A regular twenty-five meter long truck has no possibility to reach the site. The construction site is small and the storage area is limited. Good planning is one condition, among many others, that has to be fulfilled to make this project doable. All relevant parameters has been taken into account and analyzed with a decision model.
25

The morphology and hydro-chemistry of a gypsum karst, Codroy, Newfoundland.

Sweet, Geraldine January 1978 (has links)
<p> In the summer of 1976 a study was undertaken of the Woodville/Codroy gypsum karst plain, an area of about 4 km^2 in southwest Newfoundland. Geology of the gypsum is revised and the general geomorphology described. Sinkholes were surveyed and classifications based on several criteria are presented. Hydro-chemistry is reported in some detail from field and laboratory analyses. It is shown that the gypsum karst system evolves in much the same \'Jay as that of limestone but at a greater rate, permitting comprehensive study of morphologic evolution within post-glacial karst areas. Processes at work in the gypsum may be initially simpler than those in carbonates but complexities of rock characteristics complicate the picture. Some water measurements indicate diffuse flow conditions in the aquifer, while others suggest conduit flow; it is demonstrated that both diffuse and conduit flow systems may operate in conjunction. </p> / Thesis / Master of Arts (MA)
26

The influence of gypsum on the hydration kinetics and the microstructure of calcium sulfoaluminate cements in sulfate-rich environmnets

Beltagui, Hoda January 2017 (has links)
No description available.
27

The use of gypsum and a coal desulfurization by-product to ameliorate subsoil acidity for alfalfa growth

Chessman, Dennis John 30 September 2004 (has links)
Acid soils limit the growth of aluminum-(Al) sensitive crops such as alfalfa (Medicago sativa L.). Management of acid subsoils can be difficult due to physical and economic constraints. Field experiments were conducted at two locations to evaluate the effectiveness of surface-applied gypsum and a flue gas desulfurization by-product for reducing the toxic effects of acid subsoils on alfalfa. The materials were applied at rates of 0, 5, 10, and 15 Mg ha-1. In addition, a glasshouse experiment was conducted that used 0, 5, and 10 Mg ha-1 of gypsum only. Field studies were concluded 41 and 45 months after treatment application at the two locations. No effect of material on alfalfa yield or tissue mineral concentration was observed. Also, rate did not affect yield. However, there were differences in plant tissue mineral concentration in several harvests that were related to rate. Soil was sampled periodically to 120 cm and indicated movement of Ca and S into the soil profile to depths of 60 and 120 cm, respectively. Subsoil pHH2O and pHCaCl2 were not affected by treatment. Extractable and exchangeable Al were not reduced by movement of Ca and S into the soil. In the glasshouse study, alfalfa yields and root growth were not affected by gypsum rate. As gypsum rate increased, plant tissue S increased, but K and Mg decreased. Alfalfa roots did not grow below 60 cm, even though there was indication of material movement to 90 cm in the soil. Although sulfur moved to 75 cm, no effect on soil Al was observed. Leachate collected from the bottoms of columns indicated that soil cations were leached as a result of gypsum application. Gypsum and the flue gas desulfurization by-product did not significantly affect the acid soils used in these studies or improve alfalfa growth.
28

Development and application of ferrihydrite-modified diatomite and gypsum for phosphorus control in lakes and reservoirs

Xiong, Wenhui 21 September 2009
A novel phosphorus (P) adsorbent, ferrihydrite-modified diatomite (FHMD) was developed and characterized in this study. The FHMD was made through surface modification treatments, including NaOH treatment and ferrihydrite deposition on raw diatomite. In the NaOH treatment, surface SiO2 was partially dissolved in the NaOH solution. The dissolved Si contributed to form stable 2-line ferrihydrite, which deposited into the larger mesopores and macropores of the diatomite. The 2-line ferrihydrite not only deposited into the pores of the diatomite but also aggregated on the surface. Filling the larger mesopores and macropores of the diatomite and aggregation on the diatomite surface with 0.24 g Fe/g of 2-line ferrihydrite resulted in a specific surface area of 211.1 m2/g for the FHMD, which is an 8.5-fold increase over the raw diatomite (24.77 m2/g). The surface modification also increased the point of zero charge (pHPZC) values to 10 for the FHMD from 5.8 for the raw diatomite.<p> Effects of the formation process parameters such as concentrations of FeCl2, NaOH, and drying temperature on the formation mechanism and crystalline characteristics of FHMD were studied by using X-ray absorption near-edge structure (XANES) spectroscopy. The spectra were recorded in both the total electron yield (TEY) and the fluorescence yield (FY) modes to investigate the chemical nature of Fe and Si on the surface and in the bulk of ferrihydrite-modified diatomite, respectively. It was found that only the surface SiO2 was partially dissolved in the NaOH solution with stirring and heating, whereas the bulk of diatomite seemed to be preserved. The dissolved Si was incorporated into the structure of ferrihydrite to form the 2-line Si-containing ferrihydrite. The crystalline degree of ferrihydrite increased with the increasing FeCl2 concentration and the Brunauer-Emmett-Teller (BET) specific surface area of FHMD decreased with the increasing FeCl2 concentration. The NaOH solution of higher concentration partially dissolved more surface SiO2 and the crystalline degree of ferrihydrite decreased with the increase in NaOH concentration. The dehydroxylation on the surface of FHMD occurred in the high temperature calcination, causing an energy shift in the Si L-edge spectra to the high energy side and an increase in the crystalline degree of ferrihydrite. In this study, the optimal synthesis conditions for the FHMD with the least crystalline degree and the highest surface area were found to be as the follows: 100 mL of 0.5M FeCl2 solution, 6M NaOH solution and the drying temperature of 50 ºC.<p> Phosphorus adsorption behavior and adsorption mechanism of FHMD were investigated in the research. The Langmuir model best described the P adsorption data for FHMD. Because of increased surface area and surface charge, the maximum adsorption capacity of FHMD at pH 4 and pH 8.5 was increased from 10.2 mg P/g and 1.7 mg P/g of raw diatomite to 37.3 mg P/g and 13.6 mg P/g, respectively. Phosphorus showed the best affinity of adsorption onto FHMD among common anions. K-edge P XANES spectra demonstrate that P is not precipitated with Fe (III) of FHMD, but adsorbed on the surface layer of FHMD.<p> Phosphorus removal from lake water and limiting phosphorus release from sediment by FHMD was examined. Phosphorus removal from lake water proceeded primarily through P adsorption onto the surface of FHMD. When a dose of FHMD of 250 mg/L was applied to lake water, a total phosphorus (TP) removal efficiency of 88% was achieved and a residual TP concentration was 17.0 µg/L which falls within the oligotrophic TP range (3.0-17.7 µg/L). FHMD settled down to the bottom of the 43 cm high cylinder within 6 hours, which suggested that retention time of FHMD in the 5.5 m of Jackfish lake water column was close to the equilibrium time of P adsorption onto FHMD (72 hours). During the 30-day anoxic incubation period, TP concentrations in lake water treated by 400, 500 and 600 mg/L of FHMD showed a slight decrease and maximum TP concentrations remained at levels lower than 15 µg/L. The addition of FHMD resulted in a marked increase in Fe-P fraction, a pronounced decrease in labile-P and organic-P fractions, and stable Al-P, Ca-P and residual-P fractions. The effect of FHMD on limiting P release was comparable with those of the combination of FHMD and alum solutions with logarithmic ratios of Al to mobile P of 0.5 and 0.8. FHMD not only can effectively remove P from lake water but also keep a strong P-binding capacity under anoxic conditions and competition for P with alum at high amounts.<p> The role of gypsum on stabilizing sediment and the optimum dose of gypsum were investigated. The effectiveness of gypsum in stabilizing sediment was proved by the fact that at the same agitation speed, turbidities and soluble reactive P (SRP) concentrations of samples treated with gypsum were much lower than those of sample without gypsum. The optimal thickness of the gypsum layer was found to be 0.8 cm.<p> Combined application of FHMD and gypsum to P control was investigated in the research. It was found in the 30-day incubation of lake water and sediment treated by FHMD and gypsum that no P release seemed to occur regardless of oxic or anoxic conditions. In order to investigate the 120-day effects of FHMD and gypsum on the P control under anoxic and agitation conditions a lab-scale artificial aquarium was established in an environmental chamber. Daily oscillation of a metal grid did not yield the sediment resuspension due to the gypsum stabilization. The combined application of FHMD and gypsum resulted in a 1 g/L increase in the SO42- concentration in the 120-day aquarium compared with that in the control aquarium; however it did not affect the total kjeldahl nitrogen (TKN) concentrations in both the control aquarium and the 120-day aquarium. The addition of FHMD and gypsum enhanced total alkalinity in the 120-day aquarium, thereby improving buffering capacity of lake water. Under anoxic conditions and sediment resuspension conditions, relative to a large increase in total P (TP) concentrations in the control aquarium, TP concentrations in the 120-day aquarium stayed relatively stable, fluctuating within the range of 9.1-13.3 µg/L. Relative to control sediment, Fe-P was significantly enhanced during the 60-day incubation; however, Fe-P did not appear to increase significantly in the second 60-day incubation. Labile-P and organic-P decreased with sediment depths in both control aquarium and test aquariums; however, Al-P, Ca-P and residue-P increased with sediment depth. Lower Al-P is observed in treatment aquariums than in control sediment.<p> As an effective P adsorbent, FHMD showed a high adsorption capacity as well as a significantly higher affinity for P than other anions. A combined application of FHMD and gypsum effectively reduced sediment resuspension and maintained TP levels within the oligotrophic range under anoxic conditions in the laboratory-scale artificial aquarium.
29

Development and application of ferrihydrite-modified diatomite and gypsum for phosphorus control in lakes and reservoirs

Xiong, Wenhui 21 September 2009 (has links)
A novel phosphorus (P) adsorbent, ferrihydrite-modified diatomite (FHMD) was developed and characterized in this study. The FHMD was made through surface modification treatments, including NaOH treatment and ferrihydrite deposition on raw diatomite. In the NaOH treatment, surface SiO2 was partially dissolved in the NaOH solution. The dissolved Si contributed to form stable 2-line ferrihydrite, which deposited into the larger mesopores and macropores of the diatomite. The 2-line ferrihydrite not only deposited into the pores of the diatomite but also aggregated on the surface. Filling the larger mesopores and macropores of the diatomite and aggregation on the diatomite surface with 0.24 g Fe/g of 2-line ferrihydrite resulted in a specific surface area of 211.1 m2/g for the FHMD, which is an 8.5-fold increase over the raw diatomite (24.77 m2/g). The surface modification also increased the point of zero charge (pHPZC) values to 10 for the FHMD from 5.8 for the raw diatomite.<p> Effects of the formation process parameters such as concentrations of FeCl2, NaOH, and drying temperature on the formation mechanism and crystalline characteristics of FHMD were studied by using X-ray absorption near-edge structure (XANES) spectroscopy. The spectra were recorded in both the total electron yield (TEY) and the fluorescence yield (FY) modes to investigate the chemical nature of Fe and Si on the surface and in the bulk of ferrihydrite-modified diatomite, respectively. It was found that only the surface SiO2 was partially dissolved in the NaOH solution with stirring and heating, whereas the bulk of diatomite seemed to be preserved. The dissolved Si was incorporated into the structure of ferrihydrite to form the 2-line Si-containing ferrihydrite. The crystalline degree of ferrihydrite increased with the increasing FeCl2 concentration and the Brunauer-Emmett-Teller (BET) specific surface area of FHMD decreased with the increasing FeCl2 concentration. The NaOH solution of higher concentration partially dissolved more surface SiO2 and the crystalline degree of ferrihydrite decreased with the increase in NaOH concentration. The dehydroxylation on the surface of FHMD occurred in the high temperature calcination, causing an energy shift in the Si L-edge spectra to the high energy side and an increase in the crystalline degree of ferrihydrite. In this study, the optimal synthesis conditions for the FHMD with the least crystalline degree and the highest surface area were found to be as the follows: 100 mL of 0.5M FeCl2 solution, 6M NaOH solution and the drying temperature of 50 ºC.<p> Phosphorus adsorption behavior and adsorption mechanism of FHMD were investigated in the research. The Langmuir model best described the P adsorption data for FHMD. Because of increased surface area and surface charge, the maximum adsorption capacity of FHMD at pH 4 and pH 8.5 was increased from 10.2 mg P/g and 1.7 mg P/g of raw diatomite to 37.3 mg P/g and 13.6 mg P/g, respectively. Phosphorus showed the best affinity of adsorption onto FHMD among common anions. K-edge P XANES spectra demonstrate that P is not precipitated with Fe (III) of FHMD, but adsorbed on the surface layer of FHMD.<p> Phosphorus removal from lake water and limiting phosphorus release from sediment by FHMD was examined. Phosphorus removal from lake water proceeded primarily through P adsorption onto the surface of FHMD. When a dose of FHMD of 250 mg/L was applied to lake water, a total phosphorus (TP) removal efficiency of 88% was achieved and a residual TP concentration was 17.0 µg/L which falls within the oligotrophic TP range (3.0-17.7 µg/L). FHMD settled down to the bottom of the 43 cm high cylinder within 6 hours, which suggested that retention time of FHMD in the 5.5 m of Jackfish lake water column was close to the equilibrium time of P adsorption onto FHMD (72 hours). During the 30-day anoxic incubation period, TP concentrations in lake water treated by 400, 500 and 600 mg/L of FHMD showed a slight decrease and maximum TP concentrations remained at levels lower than 15 µg/L. The addition of FHMD resulted in a marked increase in Fe-P fraction, a pronounced decrease in labile-P and organic-P fractions, and stable Al-P, Ca-P and residual-P fractions. The effect of FHMD on limiting P release was comparable with those of the combination of FHMD and alum solutions with logarithmic ratios of Al to mobile P of 0.5 and 0.8. FHMD not only can effectively remove P from lake water but also keep a strong P-binding capacity under anoxic conditions and competition for P with alum at high amounts.<p> The role of gypsum on stabilizing sediment and the optimum dose of gypsum were investigated. The effectiveness of gypsum in stabilizing sediment was proved by the fact that at the same agitation speed, turbidities and soluble reactive P (SRP) concentrations of samples treated with gypsum were much lower than those of sample without gypsum. The optimal thickness of the gypsum layer was found to be 0.8 cm.<p> Combined application of FHMD and gypsum to P control was investigated in the research. It was found in the 30-day incubation of lake water and sediment treated by FHMD and gypsum that no P release seemed to occur regardless of oxic or anoxic conditions. In order to investigate the 120-day effects of FHMD and gypsum on the P control under anoxic and agitation conditions a lab-scale artificial aquarium was established in an environmental chamber. Daily oscillation of a metal grid did not yield the sediment resuspension due to the gypsum stabilization. The combined application of FHMD and gypsum resulted in a 1 g/L increase in the SO42- concentration in the 120-day aquarium compared with that in the control aquarium; however it did not affect the total kjeldahl nitrogen (TKN) concentrations in both the control aquarium and the 120-day aquarium. The addition of FHMD and gypsum enhanced total alkalinity in the 120-day aquarium, thereby improving buffering capacity of lake water. Under anoxic conditions and sediment resuspension conditions, relative to a large increase in total P (TP) concentrations in the control aquarium, TP concentrations in the 120-day aquarium stayed relatively stable, fluctuating within the range of 9.1-13.3 µg/L. Relative to control sediment, Fe-P was significantly enhanced during the 60-day incubation; however, Fe-P did not appear to increase significantly in the second 60-day incubation. Labile-P and organic-P decreased with sediment depths in both control aquarium and test aquariums; however, Al-P, Ca-P and residue-P increased with sediment depth. Lower Al-P is observed in treatment aquariums than in control sediment.<p> As an effective P adsorbent, FHMD showed a high adsorption capacity as well as a significantly higher affinity for P than other anions. A combined application of FHMD and gypsum effectively reduced sediment resuspension and maintained TP levels within the oligotrophic range under anoxic conditions in the laboratory-scale artificial aquarium.
30

The use of gypsum and a coal desulfurization by-product to ameliorate subsoil acidity for alfalfa growth

Chessman, Dennis John 30 September 2004 (has links)
Acid soils limit the growth of aluminum-(Al) sensitive crops such as alfalfa (Medicago sativa L.). Management of acid subsoils can be difficult due to physical and economic constraints. Field experiments were conducted at two locations to evaluate the effectiveness of surface-applied gypsum and a flue gas desulfurization by-product for reducing the toxic effects of acid subsoils on alfalfa. The materials were applied at rates of 0, 5, 10, and 15 Mg ha-1. In addition, a glasshouse experiment was conducted that used 0, 5, and 10 Mg ha-1 of gypsum only. Field studies were concluded 41 and 45 months after treatment application at the two locations. No effect of material on alfalfa yield or tissue mineral concentration was observed. Also, rate did not affect yield. However, there were differences in plant tissue mineral concentration in several harvests that were related to rate. Soil was sampled periodically to 120 cm and indicated movement of Ca and S into the soil profile to depths of 60 and 120 cm, respectively. Subsoil pHH2O and pHCaCl2 were not affected by treatment. Extractable and exchangeable Al were not reduced by movement of Ca and S into the soil. In the glasshouse study, alfalfa yields and root growth were not affected by gypsum rate. As gypsum rate increased, plant tissue S increased, but K and Mg decreased. Alfalfa roots did not grow below 60 cm, even though there was indication of material movement to 90 cm in the soil. Although sulfur moved to 75 cm, no effect on soil Al was observed. Leachate collected from the bottoms of columns indicated that soil cations were leached as a result of gypsum application. Gypsum and the flue gas desulfurization by-product did not significantly affect the acid soils used in these studies or improve alfalfa growth.

Page generated in 0.0347 seconds