Spelling suggestions: "subject:"hadronically"" "subject:"hadronischen""
1 |
Quantum Collective Dynamics From the neV To the GeVSteinke, Steven Kurt January 2011 (has links)
Three problems are investigated in the context of quantum collective dynamics. First, we examine the optomechanics of a Bose-Einstein condensate trapped in an optical ring cavity and coupled to counter-propagating light fields. Virtual dipole transitions cause the light to recoil elastically from the condensate and to excite its atoms into momentum side modes. These momentum side modes produce collective density oscillations. We contrast the situation to a condensate trapped in a Fabry-Perot cavity, where only symmetric ("cosine") side modes are excited. In the ring cavity case, antisymmetric ("sine") modes can be excited also. We explore the mean field limit and find that even when the counter-propagating light fields are symmetrically pumped, there are parameter regions where spontaneous symmetry breaking occurs and the sine mode becomes occupied. In addition, quantum fluctuations are taken into account and shown to be particularly significant for parameter values near bifurcations of the mean field dynamics. The next system studied is a hybrid composed of a high quality micromechanical membrane coupled magnetically to a spinor condensate. This coupling entangles the membrane and the condensate and can produce position superposition states of the membrane. Successive spin measurements of the condensate can put the membrane into an increasingly complicated state. It is possible in principle to produce nonclassical states of the membrane. We also examine a model of weaker, nonprojective measurements of the condensate's spin using phase contrast imaging. We find an upper limit on how quickly such measurements can be made without severely disrupting the unitary dynamics. The third situation analyzed is the string breaking mechanism in ultrahigh energy collisions. When quark-antiquark pairs are produced in a collision, they are believed to be linked by a tube of chromoelectric field flux, the color string. The energy of the string grows linearly with quark separation. This energy is converted into real particles by the Schwinger mechanism. Screening of the color fields by new particles breaks the string. By quantizing excitations of the string using the conjugate coordinates of field strength and string cross-section, we recover the observed exponential spectrum of outgoing particles.
|
2 |
CHARM and Strangeness in Quark-Gluon Plasma HadronizationPetran, Michal January 2013 (has links)
This dissertation presents a theoretical study of soft hadron production in relativistic heavy-ion collisions. The aim is to explore the principles governing the hadronization of the expanding quark-gluon plasma (QGP) fireball, and to understand its properties. Strange hadron production and strangeness abundance in the QGP help us to look before the instant of hadronization. Consideration of entropy and charm production further enhances the reach back in time to the first instances of the heavy ion collision. Much of the ongoing effort is to demonstrate the validity of a QGP hadronization model which describes the particle production data accurately and thus allows us to carry out the above research program. We perform a centrality dependent study of multistrange hadrons from Au-Au collisions at √SNN = 62.4 GeV, data obtained at the Relativistic Heavy Ion Collider (RHIC). We show that the statistical hadronization model (SHM) well describes particle production. For all centralities, the particle production conditions are compatible with the earlier proposed critical hadronization pressure suggesting a set of universal hadronization conditions of QGP. Heavy-ion collisions at the Large Hadron Collider (LHC) present a new challenge for SHM in describing particle production at TeV energy scales. The chemical non-equilibrium model gives a good description of the hadron production in Pb-Pb collisions at √SNN = 2.76 TeV consistently as a function of centrality. Moreover, the model parameters, such as chemical freeze-out temperature, assume expected values suggested by results from previous studies at lower energies. The quark-gluon plasma fireball hadronizes at the same universal hadronization conditions, that is a common critical pressure, entropy and energy density. At LHC energies, a significant amount of charm is expected to be produced. It is therefore crucial to incorporate charm into the present description of particle production. We present a new tool, an upgraded SHARE with CHARM program, that quantifies the effect of charm on the yield of lighter hadrons and physical properties of the hadronizing fireball. In addition to light flavors (u,d,s), SHARE with CHARM describes charm hadron production and decays of charm hadrons. According to present experimental results, charm decays mainly affect the yields of multistrange particles. This dissertation begins with an introduction to the particle production in heavy-ion collisions and SHM framework, followed by a summary of results that are either published or submitted to peer-reviewed journals and others which are published as conference proceedings. Reprints of the publications are attached to the dissertation as appendices. Each appendix is prefaced with a short summary of presented results, and my contribution to these works is described.
|
3 |
Particle Production in Matter at Extreme ConditionsKuznetsova, Inga Vladimirovna January 2009 (has links)
We study particle production and its density evolution and equilibration in hot dense medium, such as hadronic gas after quark gluon plasma hadronization and relativistic electron positron photon plasma. For this study we use kinetic momentum integrated equations for particles density evolution with Lorentz invariant reaction rates. We extend these equations, used before for two-to-two particles reactions (1 + 2 ↔ 3 + 4), to the case of two-to-one and backward reactions (1 + 2 ↔ 3). One type of hot dense medium, which we study, is hadronic gas produced at quark gluon plasma hadronization in heavy ions collisions in SPS, RHIC and LHC experiments. We study hadron production at quark gluon plasma hadronization and their evolution in thermal hadronic gas phase. We consider non-equilibrium hadronization model, for which the yields of the light quark hadrons are defined by entropy conservation. Yields of hadrons containing heavier (strange, charm, bottom) quarks are mainly controlled by flavor conservation. We predict yields of charm and bottom hadrons within this non-equilibrium statistical hadronization model. Then we use this non-equilibrium hadronization as the initial condition in the study of hadronic kinetic phase. During this time period some hadronic resonances can be produced in lighter hadrons fusion. This reaction is opposite to resonance decay. Production of resonances is dominant over decay if there is non-equilibrium excess of decay products. Within this model we explain apparently contradictory experimental results reported in RHIC experiments: ∑(1385) yield is enhanced while ∧(1520) yield is suppressed compared to the statistical hadronization model expectation obtained without kinetic phase. We also predict Δ(1232) enhancement. The second type of plasma medium we consider is the relativistic electron position photon plasma (EP³) drop. This plasma is expected to be produced in decay of supercritical field created in ultrashort laser pulse. We study at what conditions this plasma drop is opaque for photons and therefore may reach thermal and chemical equilibrium. Further we consider muon and pion production in this plasma also as a diagnostic tool. Such heavy particles can be diagnostic tool to study the properties of EP³ plasma, similar to the role taken by heavy hadrons production in heavy ions collisions. Finally all these theoretical developments can be applied to begin a study of particles evolution in early universe in temperatures domain from QGP hadronization (160 MeV) to nucleosynthesis (0.1 MeV). The first results on pion equilibration are presented here.
|
4 |
Heavy Flavor Dynamics in Relativistic Heavy-ion CollisionsCao, Shanshan January 2014 (has links)
<p>Heavy flavor hadrons serve as valuable probes of the transport properties of the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. In this dissertation, we introduce a comprehensive framework that describes the full-time evolution of heavy flavor in heavy-ion collisions, including its initial production, in-medium evolution inside the QGP matter, hadronization process from heavy quarks to their respective mesonic bound states and the subsequent interactions between heavy mesons and the hadron gas.</p><p>The in-medium energy loss of heavy quarks is studied within the framework of a Langevin equation coupled to hydrodynamic models that simulate the space-time evolution of the hot and dense QGP matter. We improve the classical Langevin approach such that, apart from quasi-elastic scatterings between heavy quarks and the medium background, radiative energy loss is incorporated as well by treating gluon radiation as a recoil force term. The subsequent hadronization of emitted heavy quarks is simulated via a hybrid fragmentation plus recombination model. The propagation of produced heavy mesons in the hadronic phase is described using the ultra-relativistic quantum molecular dynamics (UrQMD) model. Our calculation shows that while collisional energy loss dominates the heavy quark motion inside the QGP in the low transverse momentum (pT) regime, contributions from gluon radiation are found to be significant at high pT. The recombination mechanism is important for the heavy flavor meson production at intermediate energies. The hadronic final state interactions further enhance the suppression and the collective flow of heavy mesons we observe. Within our newly developed framework, we present numerical results for the nuclear modification and the elliptic flow of D mesons, which are consistent with measurements at both the CERN Large Hadron Collider (LHC) and the BNL Relativistic Heavy-Ion Collider (RHIC); predictions for B mesons are also provided.</p><p>In addition, various transport properties of heavy quarks are investigated within our numerical framework, such as the thermalization process of heavy quarks inside the QGP, and how the initial configuration of the QGP as well as its properties affect the final state spectra and the elliptic flow of heavy mesons and their decay electrons. The effects of initial state fluctuations in heavy-ion collisions are also studied and found to enhance the heavy quark energy loss in a (2+1)-dimensional boost invariant scenario. Furthermore, a new set of observables -- heavy-flavor-tagged angular correlation functions -- are explored and found to be potential candidates for distinguishing different energy loss mechanisms of heavy quarks inside the QGP.</p> / Dissertation
|
5 |
Statistical moments of the multiplicity distributions of identified particles in Au+Au collisionsMcDonald, Daniel 16 September 2013 (has links)
In part to search for a possible critical point (CP) in the phase diagram of hot nuclear matter, a beam energy scan was performed at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory. The Solenoidal Tracker at RHIC (STAR) collected Au+Au data sets at beam energies, √sNN , of 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV. Such a scan produces hot nuclear matter at different locations in the phase diagram. Lattice and phenomenological calculations suggest that the presence of a CP might result in divergences of the thermodynamic susceptibilities and correlation lengths. The statistical moments of the identified-particle multiplicity distributions directly depend on both the thermodynamic susceptibilities and correlation lengths, possibly making the shapes of these multiplicity distributions sensitive tools for the search for the critical point. The statistical moments of the multiplicity distributions of a number of different groups of identified particle species were analyzed. Care was taken to remove a number of experimental artifacts that can modify the shapes of the multiplicity distributions. The observables studied include the lowest four statistical moments (mean, variance, skewness, kurtosis) and some products of these moments. These observables were compared to the predictions from several approaches lacking critical behavior, such as the Hadron Resonance Gas model, mixed events, (negative) binomial, and Poisson statistics. In addition, the data were analyzed after gating on the event-by-event antiproton-to-proton ratio, which is expected to more tightly constrain the event trajectories on the phase diagram.
|
6 |
Quark Fragmentation and Hadron Formation in Nuclear Matter / Fragmentation des Quarks et Formation des Hadrons dans la Matière NucléaireDupré, Raphaël 09 November 2011 (has links)
La formation des hadrons est, dans le cadre de la théorie quantique de couleur (QCD), un processus non-perturbatif ; cette caractéristique entraîne d’importantes difficultés théoriques. C’est pourquoi, les mesures expérimentales de fragmentation dans différents noyaux sont une nécessité afin d’obtenir des progrès tangibles dans la compréhension des mécanismes de formation des hadrons. La thèse commence par les bases théoriques nécessaires à une telle approche, suivies des principaux modèles qui lui sont associés.La thèse se poursuit par l’analyse de données de Jefferson Lab obtenues à l’aide d’un faisceau d’électrons de 5 GeV incident sur différentes cibles (2H, C, Al, Fe, Sn et Pb). Les produits de la réaction sont mesurés avec le spectromètre CLAS. Les principaux résultats de cette expérience sont : (a) l’analyse multi-dimensionnelle des observables mesurées, qui permet une meilleure confrontation avec les modèles théoriques et l’extraction d’informations temporelles sur la fragmentation, et (b) l’observation d’une atténuation hadronique non-linéaire en fonction du rayon du noyau cible. Dans une partie plus théorique, le générateur d’événements PyQM, développé dans le but de reproduire les données de la collaboration HERMES, est présenté. Les résultats sont mitigés, en effet la base théorique utilisée ne semble pas s’appliquer au cas étudié, néanmoins certaines caractéristiques des données sont reproduites permettant de comprendre leurs origines parfois inattendues. Enfin, les possibilités d’expériences futures, à Jefferson Lab et dans un collisionneur ion-électron (EIC), sont explorées. / The hadron formation is, in the framework of the quantum chromodynamics theory (QCD), a non-perturbative process; this characteristic leads to important theoretical challenges. This is why experimental measurements of fragmentation in nuclei are a necessity in order to obtain substantial progress in our understanding of the mechanisms of hadron formation. The thesis begins with the introduction of theoretical background, followed by an overview of theoretical models. The thesis continues with the analysis of Jefferson Lab data obtained with a 5 GeV electron beam incident on various targets (2H, C, Al, Fe, Sn and Pb). The reaction products are measured with the CLAS spectrometer of Hall B. The main results are: (a) a multi-dimensional analysis of the measured observables, which permits a better confrontation with theoretical models and the extraction of temporal information on fragmentation, and (b) the observation of a non linear hadronic attenuation as a function of the target’s nuclear radius. The PyQM event generator, developed to reproduce the data from the HERMES collaboration, is also presented. The results are ambivalent, the theoretical basis used does not seem to apply to the studied case, however, some characteristics of the data are reproduced allowing to understand their origin, which is sometimes unexpected. Finally, the possibilities for future experiments, at Jefferson Lab and at an Electron-Ion Collider (EIC), are explored.
|
Page generated in 0.1141 seconds