• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biologia de Dermanyssus gallinae (De Geer, 1778) (Acari, Dermanyssidae) em condições de laboratorio

Tucci, Edna Clara 16 December 2004 (has links)
Orientador: Angelo Pires do Prado / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-04T02:34:32Z (GMT). No. of bitstreams: 1 Tucci_EdnaClara_D.pdf: 3392011 bytes, checksum: 0b7d93dc6082c6f65f16af39858355d2 (MD5) Previous issue date: 2004 / Resumo: O presente trabalho teve o objetivo de estudar os seguintes parâmetros biológicos de Dermanyssus gallinae: ciclo biológico em condições de laboratório sob as temperaturas de 15, 20, 25, 30 e 35 oC, fecundidade, fertilidade, influência do jejum na fertilidade e determinação das exigências térmicas. A duração média dos diferentes estágios do ciclo (em horas), obtidos nas diferentes temperaturas foi de: pré-oviposição: 86,74h (15 °C), 24h (20 °C), 24,21h (25 °C), 24,24h (30 °C) e 24,05h (35 °C); ovo: 214,30h (15 °C), 67,7h (20 °C), 42,11h (25 °C), 38,70h (30 °C) e 51,77h (35 °C); larva 163,44h (15 °C), 34,73h (20 °C), 29,44h (25 °C), 24,85h (30 °C), 32,23h (35 °C); protoninfa: 81,25h (15 °C), 73,06h (20 °C), 30,35h (25 °C), 25,66h (30 °C) , 26,4h (35 °C); deutoninfa: 145,02h (15 °C), 63,63h (20 °C), 38,37h (25 °C), 27,24h (30 °C), 37,6h (35 °C); duração total do ciclo: 690,75h (28 dias) sob 15 °C, 263,12h (11 dias) sob (20 °C), 164,63h (7 dias) sob 25 °C, 140,69h (6 dias) sob 30 °C e 172,04h(7 dias) sob 35 °C. D. gallinae desenvolveu-se melhor sob a temperatura de 30 °C, apresentando a maior viabilidade nas diferentes fases e o menor tempo de desenvolvimento. A duração do ciclo de D.gallinae diminuiu com o aumento da temperatura, indo de 690,75 a 15 °C a 140,69 a 30 °C. Sob 35 ° houve um aumento na duração do ciclo e uma baixa na viabilidade de todas as fases sugerindo que em épocas de muito calor a população de D. gallinae pode baixar ou até desaparecer por um determinado período. O período de pré oviposição não variou sob as temperaturas de 20 °C, 25 °C, 30 °C e 35 °C. No experimento onde fêmeas foram mantidas sob jejum de 1 a 12 dias, a oviposição ocorreu até o 11º dia, sendo a maior porcentagem de oviposição até o terceiro dia, reduzindo a partir do quarto dia. Recomenda-se que o intervalo de 3 dias entre as alimentações seja o mais adequado para manutenção de D. gallinae em laboratório. Intervalos entre as alimentações de 4 ou mais dias não são recomendados por devido à baixa fecundidade verificada nesses período (menor de 67,1%). A maior porcentagem das fêmeas (58,1%) ovipôs após a primeira alimentação. A partir da segunda esta porcentagem foi diminuindo até a oitava alimentação, quando apenas uma fêmea foi recuperada e que morreu antes de ovipor. No presente experimento as fêmeas de D. gallinae foram capazes de realizar um total de 7 oviposições com uma produção total de 25 ovos. Foram determinadas as exigências térmicas para D. gallinae obtendo-se os valores de temperatura base (Tb) , constante térmica (k), coeficiente de determinação (R2) e equação de regressão para o período de pré-oviposição, ovo, larva, protoninfa, deutoninfa. Com relação às exigências térmicas, foram encontrados diferentes valores para cada estágio de desenvolvimento de D. gallinae. Com base em mapas de isotermas, estimou-se a ocorrência de D. gallinae no Estado de São Paulo, verificando-se que o ácaro pode se desenvolver continuamente no Estado de São Paulo, com diminuição da população no inverno, ocorrendo de 15 a 42 gerações/ano / Abstract: The purpose of this work was to study the biological cycle of D. gallinae in the laboratory at temperatures of 15, 20, 25, 30 and 35ºC, to determine the fecundity, the fertility and the influence of fasting on fertility, as well as the thermal requirements for D. gallinae. The mean cycle duration of the different phases (in hours), at different temperatures was: Pre-oviposition: 86,7h at 15 °C; 24h at 20 °C; 24,21h at 25 °C; 24,24h at 30 °C and 24,05h at 35 °C. Egg: 214,30h at 15 °C; 67,7h at 20 °C; 42,11h at 25 °C; 38,70h at 30 °C and 51,77h at 35 °C. Larva: 163,44h at 15 °C; 34,73h at 20 °C; 29,44h at 25 °C; 24,85h at 30 °C and 32,23h at 35 °C. Protonymph: 81,25h at 15 °C; 73,06h at 20 °C; 30,35h at 25 °C; 25,66h at 30 °C and 26,4h at 35 °C. Deutonymph: 145,02h at 15 °C); 63,63h at 20 °C; 38,37h at 25 °C; 27,24h at 30 °Ca and 37,6h at 35 °C. Total cycle lenght: 690,75h (28 days) at 15 °C, 263,12h (11 days) at sob 20 °C, 164,63h (7 days) at 25 °C, 140,69h (6 days) at 30 °C and 172,04h (7 days) at 35 °C. The development of D. gallinae was higher at temperature of 30 °C, exhibiting the highest viability in the different phases and the shorter development time. The cycle time of D.gallinae decreased with the increase of temperature, from 690,75 at 15 °C to 140,69 at 30 °C. At 35 °C there was an increase in the cycle length and a drop in viability in all phases, suggesting that in warmer seasons D. gallinae population may decrease or even disappear for a period of time. No variations were found in pre-oviposition time at temperatures of 20 °C, 25 °C, 30 °C and 35 °C. In the experiment where female samples were kept from 1 to 12 days of fasting, oviposition occurred up to the 11th day, with the highest rate up to the 3rd day, decreasing from the 4th day. We recommend that the interval of three days between feedings is the most adequate to maintain D. gallinae in the laboratory. Four or more days of interval between feedings are not recommended due to the low fecundity, less than 67,1%, found during those periods of time. The results on fecundity showed that the females began to lay eggs just after the first blood meal and continued to lay eggs up to the seventh day after the meal. The highest percentage of females (58%) laid eggs after the first meal. After the second meal this pencentage began to decrease until the eighth meal, when only one female was present, but it died before it was able to lay eggs. Dermanyssus gallinae females had a total of 7 oviposition cycles totaling 25 eggs. The thermal requirements for D. gallinae were determined, for basal temperature (Tb), thermal constant (k), determination coefficient (R2) and regression equations for preoviposition, egg, larva, protonymph and deutonymph phases. Different values for thermal requirements were found for each developmental phase of D. gallinae. Based on isothermal maps the incidence of D. gallinae in São Paulo State was estimated, verifying that it can develop continuously in São Paulo State, with a decrease in its population numbers during the winter, varying from 15 to 42 generations per year / Doutorado / Parasitologia / Doutor em Parasitologia
2

Métabolisme énergétique chez un insecte hématophage : rhodnius prolixus / Energetic metabolism of an haematophagous insect : rhodnius prolixus

Leis Mendias, Miguel Alejandro 21 December 2018 (has links)
Le métabolisme est la somme des réactions chimiques dans un organisme. L’énergie leur permet d’effectuer la biosynthèse, le maintien des fonctions vitales et l’activité physique. Si l’énergie est transformée en chaleur nous pouvons déterminer le taux de transformation d’énergie chimique en taux métabolique (TM) et nous pouvons donc calculer les besoins énergétiques d’un animal. Le principal objectif de ce travail est d’évaluer le métabolisme énergétique chez la punaise hématophage Rhodnius prolixus. Nos résultats montrent, que le TM de l’alimentation chez R. prolixus atteint jusqu’à 17 fois le TM au repos. Le quotient respiratoire est de 0,83 pendant le repos et 0,52 pendant l’alimentation. De plus, la désactivation des protéines permettant gérer le choc thermique, diminuent le TM pendant la digestion. Le coût énergétique (CE) de la marche peut atteindre jusqu’à 1,7 fois le CE pendant le repos. Finalement, le CE de la production d’un oeuf chez R. prolixus est approximativement de 11,7 J. L’ensemble de nos résultats apportent des outils qui fournissent des éléments nécessaires pour mieux contrôler la transmission de maladies vectorielles. / Metabolism is the sum of all the chemical reactions in an organism. Energy uptake allows animals to perform biosynthesis, maintenance, and external work. If the energy produced is converted into heat, we can estimate the energy metabolism as the rate of conversion of chemical energy into metabolic rate (MR), which allows the calculation of energy requirements. The main objective of this work is to assess the metabolic cost of physiological work in the blood-sucking bug Rhodnius prolixus. Our results show that feeding is costly. The MR during feeding in R. prolixus reaches up to 17 times the MR during rest. The mean respiratory quotient is 0.83 during rest and 0.52 during feeding. We showed that the deactivation of Heat Shock Proteins on R. prolixus, causes a diminution of MR during digestion. Then, we showed that the energy cost (EC) during walking can reach up to 1.7 times the EC during rest. Finally, we found that the EC of production of one egg of R. prolixus was 11.7 J. All our results provide tools to a better understanding of biology and ecology of an hematophagous insect to provide the necessary elements to better control of transmission of vector-borne diseases.
3

Stress thermique et thermorégulation chez lez insectes hématophages / Thermal stress and thermoregulation in haematophagous insects

Lahondère, Chloé 23 November 2012 (has links)
Les insectes sont soumis aux fluctuations thermiques de leur environnement mais disposent d’un panel varié de réponses comportementales, physiologiques et biochimiques pour en minimiser les effets délétères et maintenir leur intégrité physiologique. Ainsi certaines espèces régulent activement leur température interne indépendamment de la température de l’environnement. Si ces insectes peuvent s’affranchir des contraintes thermiques imposées par leur environnement, ceux qui se nourrissent du sang chaud d’hôtes vertébrés endothermes n’ont pas d’autres choix que de se confronter à une situation de stress thermique à chaque prise alimentaire. Le principal objectif de ce travail de thèse est de comprendre comment des insectes hématophages, employant des stratégies alimentaires différentes, gèrent le stress thermique associé au flux massif de chaleur engendré par l’ingestion du repas de sang. Nos résultats montrent que ces insectes ont su s’adapter en développant différentes stratégies de thermorégulation. / Insects are submitted to thermal fluctuations of their environment and have developed a wide ranged panel of behavioral, physiological and biochemical responses, to minimize the subsequent deleterious effects and maintain their physiological integrity. Some species actively regulate their internal temperature independently of the temperature of the environment. If these insects can overcome the constraints imposed by their thermal environment, those that feed on warm-blooded vertebrate hosts have no choice but to confront a situation of thermal stress at each feeding event. The main objective of this work is to understand how bloodsucking insects manage heat stress associated with the massive flow of heat generated by the ingestion of the blood meal. Our results show these insects have developed different strategies of thermoregulation to protect themselves from overheating.

Page generated in 0.0548 seconds