1 |
Convex optimization based resource allocation in multi-antenna systemsShashika Manosha Kapuruhamy Badalge, . () 29 December 2017 (has links)
Abstract
The use of multiple antennas is a fundamental requirement in future wireless networks as it helps to increase the reliability and spectral efficiency of mobile radio links. In this thesis, we study convex optimization based radio resource allocation methods for the downlink of multi-antenna systems.
First, the problem of admission control in the downlink of a multicell multiple-input single-output (MISO) system has been considered. The objective is to maximize the number of admitted users subject to a signal-to-interference-plus-noise ratio (SINR) constraint at each admitted user and a transmit power constraint at each base station (BS). We have cast the admission control problem as an ℓ0 minimization problem; it is known to be combinatorial, NP-hard. Centralized and distributed algorithms to solve this problem have been proposed. To develop the centralized algorithm, we have used sequential convex programming (SCP). The distributed algorithm has been derived by using the consensus-based alternating direction method of multipliers in conjunction with SCP. We have shown numerically that the proposed admission control algorithms achieve a near-to-optimal performance. Next, we have extended the admission control problem to provide fairness, where long-term fairness among the users has been guaranteed. We have focused on proportional and max-min fairness, and proposed dynamic control algorithms via Lyapunov optimization. Results show that these proposed algorithms guarantee fairness.
Then, the problem of admission control for the downlink of a MISO heterogeneous networks (hetnet) has been considered, and the proposed centralized and distributed algorithms have been adapted to find a solution. Numerically, we have illustrated that the centralized algorithm achieves a near-to-optimal performance, and the distributed algorithm’s performance is closer to the optimal value.
Finally, an algorithm to obtain the set of all achievable power-rate tuples for a multiple-input multiple-output hetnet has been provided. The setup consists of a single macrocell and a set of femtocells. The interference power to the macro users from the femto BSs has been kept below a threshold. To find the set of all achievable power-rate tuples, a two-dimensional vector optimization problem is formulated, where we have considered maximizing the sum-rate while minimizing the sum-power, subject to maximum power and interference threshold constraints. This problem is known to be NP-hard. A solution method is provided by using the relationship between the weighted sum-rate maximization and weighted-sum-mean-squared-error minimization problems. The proposed algorithm was used to evaluate the impact of imposing interference threshold constraints and the co-channel deployments in a hetnet. / Tiivistelmä
Monen antennin käyttö on perusvaatimus tulevissa langattomissa verkoissa, koska se auttaa lisäämään matkaviestinyhteyksien luotettavuutta ja spektritehokkuutta. Tässä väitöskirjassa tutkitaan konveksiin optimointiin perustuvia radioresurssien allokointimenetelmiä moniantennijärjestelmien alalinkin suunnassa.
Ensiksi on käsitelty pääsynvalvonnan ongelmaa alalinkin suuntaan monen solun moni-tulo yksi-lähtö (MISO) -verkoissa. Tavoitteena on maksimoida hyväksyttyjen käyttäjien määrä, kun hyväksytyille käyttäjille on asetettu signaali-häiriö-kohinasuhteen (SINR) rajoitus, ja tukiasemille lähetystehon rajoitus. Pääsynvalvonnan ongelma on muotoiltu ℓ0-minimointiongelmana, jonka tiedetään olevan kombinatorinen, NP-vaikea ongelma. Ongelman ratkaisemiseksi on ehdotettu keskitettyjä ja hajautettuja algoritmeja. Keskitetty optimointialgoritmi perustuu sekventiaaliseen konveksiin optimointiin. Hajautettu algoritmi pohjautuu konsensusoptimointimenetelmään ja sekventiaaliseen konveksiin optimointiin. Ehdotettujen pääsynvalvonta-algoritmien on numeerisesti osoitettu saavuttavan lähes optimaalinen suorituskyky. Lisäksi pääsynvalvontaongelma on laajennettu takaamaan pitkän aikavälin oikeudenmukaisuus käyttäjien välillä. Työssä käytetään erilaisia määritelmiä oikeudenmukaisuuden takaamiseen, ja ehdotetaan dynaamisia algoritmeja pohjautuen Lyapunov-optimointiin. Tulokset osoittavat, että ehdotetuilla algoritmeilla taataan käyttäjien välinen oikeudenmukaisuus.
Tämän jälkeen käsitellään heterogeenisen langattoman MISO-verkon pääsynvalvonnan ongelmaa. Edellä ehdotettuja keskitettyjä ja hajautettuja algoritmeja on muokattu tämän ongelman ratkaisemiseksi. Työssä osoitetaan numeerisesti, että sekä keskitetyllä että hajautetulla algoritmilla saavutetaan lähes optimaalinen suorituskyky.
Lopuksi on laadittu algoritmi, jolla löydetään kaikki saavutettavissa olevat teho-datanopeusparit heterogeenisessä langattomassa moni-tulo moni-lähtö (MIMO) -verkossa. Verkko koostuu yhdestä makrosolusta ja useasta piensolusta. Piensolutukiasemista makrokäyttäjiin kohdistuvan häiriön teho on pidetty tietyn rajan alapuolella. Kaikkien saavutettavien teho-datanopeusparien löytämiseksi on laadittu kaksiulotteinen vektorioptimointiongelma, jossa maksimoidaan summadatanopeus pyrkien minimoimaan kokonaisteho, kun enimmäisteholle ja häiriökynnykselle on asetettu rajoitukset. Tämän ongelman tiedetään olevan NP-vaikea. Ongelman ratkaisemiseksi käytetään painotetun summadatanopeuden maksimointiongelman, ja painotetun keskineliövirheen minimointiongelman välistä suhdetta. Ehdotettua algoritmia käytettiin arvioimaan häiriörajoitusten ja saman kanavan käyttöönoton vaikutusta heterogeenisessä langattomassa verkossa.
|
2 |
Distributed compressed data gathering in wireless sensor networksLeinonen, M. (Markus) 02 October 2018 (has links)
Abstract
Wireless sensor networks (WSNs) consisting of battery-powered sensors are increasingly deployed for a myriad of Internet of Things applications, e.g., environmental, industrial, and healthcare monitoring. Since wireless access is typically the main contributor to battery usage, minimizing communications is crucial to prolong network lifetime and improve user experience. The objective of this thesis is to develop and analyze energy-efficient distributed compressed data acquisition techniques for WSNs. The thesis proposes four approaches to conserve sensors' energy by minimizing the amount of information each sensor has to transmit to meet given application requirements.
The first part addresses a cross-layer design to minimize the sensors’ sum transmit power via joint optimization of resource allocation and multi-path routing. A distributed consensus optimization based algorithm is proposed to solve the problem. The algorithm is shown to have superior convergence compared to several baselines.
The remaining parts deal with compressed sensing (CS) of sparse/compressible sources. The second part focuses on the distributed CS acquisition of spatially and temporally correlated sensor data streams. A CS algorithm based on sliding window and recursive decoding is developed. The method is shown to achieve higher reconstruction accuracy with fewer transmissions and less decoding delay and complexity compared to several baselines, and to progressively refine past estimates.
The last two approaches incorporate the quantization of CS measurements and focus on lossy source coding. The third part addresses the distributed quantized CS (QCS) acquisition of correlated sparse sources. A distortion-rate optimized variable-rate QCS method is proposed. The method is shown to achieve higher distortion-rate performance than the baselines and to enable a trade-off between compression performance and encoding complexity via the pre-quantization of measurements.
The fourth part investigates information-theoretic rate-distortion (RD) performance limits of single-sensor QCS. A lower bound to the best achievable compression — defined by the remote RD function (RDF) — is derived. A method to numerically approximate the remote RDF is proposed. The results compare practical QCS methods to the derived limits, and show a novel QCS method to approach the remote RDF. / Tiivistelmä
Patterikäyttöisistä antureista koostuvat langattomat anturiverkot yleistyvät esineiden internetin myötä esim. ympäristö-, teollisuus-, ja terveydenhoitosovelluksissa. Koska langaton tiedonsiirto kuluttaa merkittävästi energiaa, kommunikoinnin minimointi on elintärkeää pidentämään verkon elinikää ja parantamaan käyttäjäkokemusta. Väitöskirjan tavoitteena on kehittää ja analysoida energiatehokkaita hajautettuja pakattuja datankeruumenetelmiä langattomiin anturiverkkoihin. Työssä ehdotetaan neljä lähestymistapaa, jotka säästävät anturien energiaa minimoimalla se tiedonsiirron määrä, mikä vaaditaan täyttämään sovelluksen asettamat kriteerit.
Väitöskirjan ensimmäinen osa tarkastelee protokollakerrosten yhteissuunnittelua, jossa minimoidaan anturien yhteislähetysteho optimoimalla resurssiallokaatio ja monitiereititys. Ratkaisuksi ehdotetaan konsensukseen perustuva hajautettu algoritmi. Tulokset osoittavat algoritmin suppenemisominaisuuksien olevan verrokkejaan paremmat.
Loppuosat keskittyvät harvojen lähteiden pakattuun havaintaan (compressed sensing, CS). Toinen osa keskittyy tila- ja aikatasossa korreloituneen anturidatan hajautettuun keräämiseen. Työssä kehitetään liukuvaan ikkunaan ja rekursiiviseen dekoodaukseen perustuva CS-algoritmi. Tulokset osoittavat menetelmän saavuttavan verrokkejaan korkeamman rekonstruktiotarkkuuden pienemmällä tiedonsiirrolla sekä dekoodausviiveellä ja -kompleksisuudella ja kykenevän asteittain parantamaan menneitä estimaatteja.
Työn viimeiset osat sisällyttävät järjestelmämalliin CS-mittausten kvantisoinnin keskittyen häviölliseen lähdekoodaukseen. Kolmas osa käsittelee hajautettua korreloitujen harvojen signaalien kvantisoitua CS-havaintaa (quantized CS, QCS). Työssä ehdotetaan särön ja muuttuvan koodinopeuden välisen suhteen optimoiva QCS-menetelmä. Menetelmällä osoitetaan olevan verrokkejaan parempi pakkaustehokkuus sekä kyky painottaa suorituskyvyn ja enkooderin kompleksisuuden välillä mittausten esikvantisointia käyttäen.
Neljäs osa tutkii informaatioteoreettisia, koodisuhde-särösuhteeseen perustuvia suorituskykyrajoja yhden anturin QCS-järjestelmässä. Parhaimmalle mahdolliselle pakkaustehokkuudelle johdetaan alaraja, sekä kehitetään menetelmä sen numeeriseen arviointiin. Tulokset vertaavat käytännön QCS-menetelmiä johdettuihin rajoihin, ja osoittavat ehdotetun QCS-menetelmän saavuttavan lähes optimaalinen suorituskyky.
|
3 |
Radio resource allocation techniques for MISO downlink cellular networksJoshi, S. K. (Satya Krishna) 02 January 2018 (has links)
Abstract
This thesis examines radio resource management techniques for multicell multi-input single-output (MISO) downlink networks. Specifically, the thesis focuses on developing linear transmit beamforming techniques by optimizing certain quality-of-service (QoS) features, including, spectral efficiency, fairness, and throughput.
The problem of weighted sum-rate-maximization (WSRMax) has been identified as a central problem to many network optimization methods, and it is known to be NP-hard. An algorithm based on a branch and bound (BB) technique which globally solves the WSRMax problem with an optimality certificate is proposed. Novel bounding techniques via conic optimization are introduced and their efficiency is illustrated by numerical simulations. The proposed BB based algorithm is not limited to WSRMax only; it can be easily extended to maximize any system performance metric that can be expressed as a Lipschitz continuous and increasing function of the signal-to-interference-plus-noise (SINR) ratio.
Beamforming techniques can provide higher spectral efficiency, only when the channel state information (CSI) of users is accurately known. However, in practice the CSI is not perfect. By using an ellipsoidal uncertainty model for CSI errors, both optimal and suboptimal robust beamforming techniques for the worst-case WSRMax problem are proposed. The optimal method is based on a BB technique. The suboptimal algorithm is derived using alternating optimization and sequential convex programming. Through a numerical example it is also shown how the proposed algorithms can be applied to a scenario with statistical channel errors.
Next two decentralized algorithms for multicell MISO networks are proposed. The optimization problems considered are: P1) minimization of the total transmission power subject to minimum SINR constraints of each user, and P2) SINR balancing subject to the total transmit power constraint of the base stations. Problem P1 is of great interest for obtaining a transmission strategy with minimal transmission power that can guarantee QoS for users. In a system where the power constraint is a strict system restriction, problem P2 is useful in providing fairness among the users. Decentralized algorithms for both problems are derived by using a consensus based alternating direction method of multipliers.
Finally, the problem of spectrum sharing between two wireless operators in a dynamic MISO network environment is investigated. The notion of a two-person bargaining problem is used to model the spectrum sharing problem, and it is cast as a stochastic optimization. For this problem, both centralized and distributed dynamic resource allocation algorithms are proposed. The proposed distributed algorithm is more suitable for sharing the spectrum between the operators, as it requires a lower signaling overhead, compared with centralized one. Numerical results show that the proposed distributed algorithm achieves almost the same performance as the centralized one. / Tiivistelmä
Tässä väitöskirjassa tarkastellaan monisoluisten laskevan siirtotien moniantennilähetystä käyttävien verkkojen radioresurssien hallintatekniikoita. Väitöskirjassa keskitytään erityisesti kehittämään lineaarisia siirron keilanmuodostustekniikoita optimoimalla tiettyjä palvelun laadun ominaisuuksia, kuten spektritehokkuutta, tasapuolisuutta ja välityskykyä.
Painotetun summadatanopeuden maksimoinnin (WSRMax) ongelma on tunnistettu keskeiseksi monissa verkon optimointitavoissa ja sen tiedetään olevan NP-kova. Tässä työssä esitetään yleinen branch and bound (BB) -tekniikkaan perustuva algoritmi, joka ratkaisee WSRMax-ongelman globaalisti ja tuottaa todistuksen ratkaisun optimaalisuudesta. Samalla esitellään uusia conic-optimointia hyödyntäviä suorituskykyrajojen laskentatekniikoita, joiden tehokkuutta havainnollistetaan numeerisilla simuloinneilla. Ehdotettu BB-perusteinen algoritmi ei rajoitu pelkästään WSRMax-ongelmaan, vaan se voidaan helposti laajentaa maksimoimaan mikä tahansa järjestelmän suorituskykyarvo, joka voidaan ilmaista Lipschitz-jatkuvana ja signaali-(häiriö+kohina) -suhteen (SINR) kasvavana funktiona.
Keilanmuodostustekniikat voivat tuottaa suuremman spektritehokkuuden vain, jos käyttäjien kanavien tilatiedot tiedetään tarkasti. Käytännössä kanavan tilatieto ei kuitenkaan ole täydellinen. Tässä väitöskirjassa ehdotetaan WSRMax-ongelman ääritapauksiin sekä optimaalinen että alioptimaalinen keilanmuodostustekniikka soveltaen tilatietovirheisiin ellipsoidista epävarmuusmallia. Optimaalinen tapa perustuu BB-tekniikkaan. Alioptimaalinen algoritmi johdetaan peräkkäistä konveksiohjelmointia käyttäen. Numeerisen esimerkin avulla näytetään, miten ehdotettuja algoritmeja voidaan soveltaa skenaarioon, jossa on tilastollisia kanavavirheitä.
Seuraavaksi ehdotetaan kahta hajautettua algoritmia monisoluisiin moniantennilähetyksellä toimiviin verkkoihin. Tarkastelun kohteena olevat optimointiongelmat ovat: P1) lähetyksen kokonaistehon minimointi käyttäjäkohtaisten minimi-SINR-rajoitteiden mukaan ja P2) SINR:n tasapainottaminen tukiasemien kokonaislähetystehorajoitusten mukaisesti. Ongelma P1 on erittäin kiinnostava, kun pyritään kehittämään mahdollisimman pienen lähetystehon vaativa lähetysstrategia, joka pystyy takaamaan käyttäjien palvelun laadun. Ongelma P2 on hyödyllinen tiukasti tehorajoitetussa järjestelmässä, koska se tarjoaa tasapuolisuutta käyttäjien välillä. Molempien ongelmien hajautetut algoritmit johdetaan konsensusperusteisen vuorottelevan kertoimien suuntaustavan avulla. Lopuksi tarkastellaan kahden langattoman operaattorin välisen spektrinjaon ongelmaa dynaamisessa moniantennilähetystä käyttävässä verkkoympäristössä. Spektrinjako-ongelmaa mallinnetaan käyttämällä kahden osapuolen välistä neuvottelua stokastisen optimoinnin näkökulmasta. Tähän ongelmaan ehdotetaan ratkaisuksi sekä keskitettyä että hajautettua resurssien allokoinnin algoritmia. Hajautettu algoritmi sopii paremmin spektrin jakamiseen operaattorien välillä, koska se vaatii vähemmän kontrollisignalointia. Numeeriset tulokset osoittavat, että ehdotetulla hajautetulla algoritmilla saavutetaan lähes sama suorituskyky kuin keskitetyllä algoritmillakin.
|
Page generated in 0.0755 seconds