• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • Tagged with
  • 32
  • 32
  • 32
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Electrical and Optical Characteristics of InP Nanowires based p-i-n Photodetectors

Ahmed, Rizwan, Abbas, Shahid January 2010 (has links)
Photodetectors are a kind of semiconductor devices that convert incoming light to an electrical signal. Photodetectors are classified based on their different structure, fabrication technology, applications and different sensitivity. Infrared photodetectors are widely used in many applications such as night vision, thermal cameras, remote temperature sensing, and medical diagnosis etc.   All detectors have material inside that is sensitive to incoming light. It will absorb the photons and, if the incoming photons have enough energy, electrons will be excited to higher energy levels and if these electrons are free to move, under the effect of an external electric field, a photocurrent is generated.   In this project Fourier Transform Infrared (FT-IR) Spectroscopy is used to investigate a new kind of photodiodes that are based on self-assembled semiconductor nanowires (NWs) which are grown directly on the substrate without any epi-layer. The spectrally resolved photocurrent (at different applied biases) and IV curves (in darkness and illumination) for different temperatures have been studied respectively. Polarization effects (at low and high Temperatures) have been investigated.  The experiments are conducted for different samples with high concentration of NWs as well as with lower concentration of NWs in the temperature range from 78 K (-195ºC) to 300 (27ºC). These photodiodes are designed to work in near infrared (NIR) spectral range.   The results show that the NW photodetectors indeed are promising devices with fairly high break down voltage, change of photocurrent spectra with polarized light, low and constant reverse saturation current (Is). The impact of different polarized light on photocurrent spectra has been investigated and an attempt has been made to clarify the observed double peak of InP photocurrent spectrum. Our investigations also include a comparison to a conventional planar InP p-i-n photodetector.
32

First Principles Calculations of Electron Transport and Structural Damage by Intense Irradiation

Ortiz, Carlos January 2009 (has links)
First principle electronic structure theory is used to describe the effect of crystal binding on radiation detectors, electron transport properties, and structural damage induced by intense irradiation. A large database containing general electronic structure results to which data mining algorithms can be applied in the search for new functional materials, a case study is presented for scintillator detector materials. Inelastic cross sections for the generation of secondary electron cascades through impact ionization are derived from the dielectric response of an electron gas and evolved in time with Molecular Dynamics (MD). Qualitative and quantitive estimates are presented for the excitation and relaxation of a sample irradiated with Free Electron Laser pulses. A study is presented in where the structural damage on covalent bonded crystals following intense irradiation is derived from a Tight Binding approach and evolved in time with MD in where the evolution of the sample is derived from GW theory for the quasiparticle spectra and a dedicated Boltzmann transport equation for the impact ionization.

Page generated in 0.0344 seconds