41 |
Magnetic Spherical PendulumYildirim, Selma 01 January 2003 (has links) (PDF)
The magnetic spherical pendulum is a mechanical system consisting of a
pendulum whereof the bob is electrically charged, moving under the influence
of gravitation and the magnetic field induced by a magnetic monopole deposited
at the origin. Physically not directly realizable, it turns out to be
equivalent to a reduction of the Lagrange top. This work is essentially the logbook
of our attempts at understanding the simplest contemporary approaches
to the magnetic spherical pendulum.
|
42 |
Macroscopic dressing of electron states in a two dimensional ballistic electron waveguide /Subbiah, Suresh, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 165-167). Available also in a digital version from Dissertation Abstracts.
|
43 |
Hamiltonian systems with Poisson commuting integralsEliasson, Håkan. January 1984 (has links)
Thesis (doctoral)--University of Stockholm, 1984. / Abstract (1 leaf) inserted. Bibliography: p. 79-80.
|
44 |
The effect of pair interaction on nuclear matterPwu, Yih. January 1961 (has links)
Thesis (Ph.D.)--University of California, Berkeley, 1961. / "UC-34 Physics" -t.p. "TID-4500 (16th Ed.)" -t.p. Includes bibliographical references (p. 102).
|
45 |
Characterizing entangling quantum dynamics /Bremner, Michael J. January 2005 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2005. / Includes bibliography.
|
46 |
Convexity, convergence and feedback in optimal control /Goebel, Rafal, January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (p. 120-124).
|
47 |
Lax representations, Hamiltonian structures, infinite conservation laws and integrable discretization for some discrete soliton systemsZhu, Zuonong 01 January 2000 (has links)
No description available.
|
48 |
The metric for non-Hermitian Hamiltonians : a case studyMusumbu, Dibwe Pierrot 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2006. / ENGLISH ABSTRACT: We are studying a possible implementation of an appropriate framework for a proper non-
Hermitian quantum theory. We present the case where for a non-Hermitian Hamiltonian with
real eigenvalues, we define a new inner product on the Hilbert space with respect to which
the non-Hermitian Hamiltonian is Quasi-Hermitian. The Quasi-hermiticity of the Hamiltonian
introduces the bi-orthogonality between the left-hand eigenstates and the right-hand eigenstates,
in which case the metric becomes a basis transformation. We use the non-Hermitian quadratic
Hamiltonian to show that such a metric is not unique but can be uniquely defined by requiring
to hermitize all elements of one of the irreducible sets defined on the set of all observables. We
compare the constructed metric with specific known examples in the literature in which cases a
unique choice is made. / AFRIKAANSE OPSOMMING: Ons ondersoek die implementering van n gepaste raamwerk virn nie-Hermitiese kwantumteorie.
Ons beskoun nie-Hermitiese Hamilton-operator met reele eiewaardes en definieer in
gepaste binneproduk ten opsigtewaarvan die operator kwasi-Hermitiese is. Die kwasi- Hermities
aard van die Hamilton operator lei dan tot n stel bi-ortogonale toestande. Ons konstrueer
n basistransformasie wat die linker en regter eietoestande van hierdie stel koppel. Hierdie
transformasie word dan gebruik omn nuwe binneproduk op die Hilbert-ruimte te definieer.
Die oorspronklike nie-HermitieseHamilton-operator is danHermitiesmet betrekking tot hierdie
nuwe binneproduk. Ons gebruik die nie-Hermitiese kwadratieseHamilton-operator omte toon
dat hierdie metriek nie uniek is nie, maar wel uniek bepaal kan word deur verder te vereis dat
dit al die elemente van n onherleibare versameling operatoreHermitiseer. Ons vergelyk hierdie
konstruksiemet die bekende voorbeelde in die literatuur en toon dat diemetriek in beide gevalle
uniek bepaal kan word.
|
49 |
Flow equations for hamiltonians from continuous unitary transformationsBartlett, Bruce 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: This thesis presents an overview of the flow equations recently introduced by Wegner. The little
known mathematical framework is established in the initial chapter and used as a background for the
entire presentation. The application of flow equations to the Foldy-Wouthuysen transformation and to
the elimination of the electron-phonon coupling in a solid is reviewed. Recent flow equations approaches to
the Lipkin model are examined thoroughly, paying special attention to their utility near the phase change
boundary. We present more robust schemes by requiring that expectation values be flow dependent;
either through a variational or self-consistent calculation. The similarity renormalization group equations
recently developed by Glazek and Wilson are also reviewed. Their relationship to Wegner's flow equations
is investigated through the aid of an instructive model. / AFRIKAANSE OPSOMMING: Hierdie tesis bied 'n oorsig van die vloeivergelykings soos dit onlangs deur Wegner voorgestel is. Die
betreklik onbekende wiskundige raamwerk word in die eerste hoofstuk geskets en deurgans as agtergrond
gebruik. 'n Oorsig word gegee van die aanwending van die vloeivergelyking vir die Foldy-Wouthuysen
transformasie en die eliminering van die elektron-fonon wisselwerking in 'n vastestof. Onlangse benaderings
tot die Lipkin model, deur middel van vloeivergelykings, word ook deeglik ondersoek. Besondere aandag
word gegee aan hul aanwending naby fasegrense. 'n Meer stewige skema word voorgestel deur te vereis
dat verwagtingswaardes vloei-afhanklik is; óf deur gevarieerde óf self-konsistente berekenings. 'n Inleiding
tot die gelyksoortigheids renormerings groep vergelykings, soos onlangs ontwikkel deur Glazek en Wilson,
word ook aangebied. Hulle verwantskap met die Wegner vloeivergelykings word bespreek aan die hand
van 'n instruktiewe voorbeeld.
|
50 |
Application of the generalized Melnikov method to weakly damped parametrically excited cross waves with surface tensionFadel, Suzan M. 25 September 1998 (has links)
The Wiggins-Holmes extension of the generalized
Melnikov method (GMM) is applied to weakly damped
parametrically excited cross waves with surface tension in
a long rectangular wave channel in order to determine if
these cross waves are chaotic. The Lagrangian density
function for surface waves with surface tension is
simplified by transforming the volume integrals to surface
integrals and by subtracting the zero variation integrals.
The Lagrangian is written in terms of the three generalized
coordinates (or, equivalently the three degrees of freedom)
that are the time-dependent components of the velocity
potential. A generalized dissipation function is assumed to
be proportional to the Stokes material derivative of the
free surface. The generalized momenta are calculated from
the Lagrangian and the Hamiltonian is determined from a
Legendre transformation of the Lagrangian. The first order
ordinary differential equations derived from the
Hamiltonian are usually suitable for the application of the
GMM. However, the cross wave equations of motion must be
transformed in order to obtain a suspended system for the
application of the GMM. Only three canonical
transformations that preserve the dynamics of the cross
wave equations of motion are made because of an extension
of the Herglotz algorithm to nonautonomous systems. This
extension includes two distinct types of the generalized
Herglotz algorithm (GHA). The system of nonlinear
nonautonomous evolution equations determined from
Hamilton's equations of motion of the second kind are
averaged in order to obtain an autonomous system. The
unperturbed system is analyzed to determine hyperbolic
saddle points that are connected by heteroclinic orbits
The perturbed Hamiltonian system that includes surface
tension satisfies the KAM nondegeneracy requirements; and
the Melnikov integral is calculated to demonstrate that the
motion is chaotic. For the perturbed dissipative system
with surface tension, the Melnikov integral is identically
zero implying that a higher dimensional GMM is necessary in
order to demonstrate by the GMM that the motion is chaotic.
However, numerical calculations of the largest Liapunov
characteristic exponent demonstrate that the perturbed
dissipative system with surface tension is also chaotic. A
chaos diagram is computed in order to search for possible
regions of the damping parameter and the Floquet parametric
forcing parameter where chaotic motions may exist. / Graduation date: 1999
|
Page generated in 0.0827 seconds