81 |
Accuracy of perturbation theory for slow-fast Hamiltonian systemsSu, Tan January 2013 (has links)
There are many problems that lead to analysis of dynamical systems with phase variables of two types, slow and fast ones. Such systems are called slow-fast systems. The dynamics of such systems is usually described by means of different versions of perturbation theory. Many questions about accuracy of this description are still open. The difficulties are related to presence of resonances. The goal of the proposed thesis is to establish some estimates of the accuracy of the perturbation theory for slow-fast systems in the presence of resonances. We consider slow-fast Hamiltonian systems and study an accuracy of one of the methods of perturbation theory: the averaging method. In this thesis, we start with the case of slow-fast Hamiltonian systems with two degrees of freedom. One degree of freedom corresponds to fast variables, and the other degree of freedom corresponds to slow variables. Action variable of fast sub-system is an adiabatic invariant of the problem. Let this adiabatic invariant have limiting values along trajectories as time tends to plus and minus infinity. The difference of these two limits for a trajectory is known to be exponentially small in analytic systems. We obtain an exponent in this estimate. To this end, by means of iso-energetic reduction and canonical transformations in complexified phase space, we reduce the problem to the case of one and a half degrees of freedom, where the exponent is known. We then consider a quasi-linear Hamiltonian system with one and a half degrees of freedom. The Hamiltonian of this system differs by a small, ~ε, perturbing term from the Hamiltonian of a linear oscillatory system. We consider passage through a resonance: the frequency of the latter system slowly changes with time and passes through 0. The speed of this passage is of order of ε. We provide asymptotic formulas that describe effects of passage through a resonance with an improved accuracy O(ε3/2). A numerical verification is also provided. The problem under consideration is a model problem that describes passage through an isolated resonance in multi-frequency quasi-linear Hamiltonian systems. We also discuss a resonant phenomenon of scattering on resonances associated with discretisation arising in a numerical solving of systems with one rotating phase. Numerical integration of ODEs by standard numerical methods reduces continuous time problems to discrete time problems. For arbitrarily small time step of a numerical method, discrete time problems have intrinsic properties that are absent in continuous time problems. As a result, numerical solution of an ODE may demonstrate dynamical phenomena that are absent in the original ODE. We show that numerical integration of systems with one fast rotating phase leads to a situation of such kind: numerical solution demonstrates phenomenon of scattering on resonances, that is absent in the original system.
|
82 |
Photon Exchange Between a Pair of Nonidentical Atoms with Two Forms of InteractionsGolshan, Shahram Mohammad-Mehdi 05 1900 (has links)
A pair of nonidentical two-level atoms, separated by a fixed distance R, interact through photon exchange. The system is described by a state vector which is assumed to be a superposition of four "essential states": (1) the first atom is excited, the second one is in the ground state, and no photon is present, (2) the first atom is in its ground state, the second one is excited, and no photon is present, (3) both atoms are in their ground states and a photon is present, and (4) both atoms are excited and a photon is also present. The system is initially in state (1). The probabilities of each atom being excited are calculated for both the minimally-coupled interaction and the multipolar interaction in the electric dipole approximation. For the minimally-coupled interaction Hamiltonian, the second atom has a probability of being instantaneously excited, so the interaction is not retarded. For the multipolar interaction Hamiltonian, the second atom is not excited before the retardation time, which agrees with special relativity. For the minimally-coupled interaction the nonphysical result occurs because the unperturbed Hamiltonian is not the energy operator in the Coulomb gauge. For the multipolar Hamiltonian in the electric dipole approximation the unperturbed Hamiltonian is the energy operator. An active view of unitary transformations in nonrelativistic quantum electrodynamics is used to derive transformation laws for the potentials of the electromagnetic field and the static Coulomb potential. For a specific choice of unitary transformation the transformation laws for the potentials are used in the minimally-coupled second-quantized Hamiltonian to obtain the multipolar Hamiltonian, which is expressed in terms of the quantized electric and magnetic fields.
|
83 |
Influence of Network topology on the onset of long-range interaction / Lien entre le seuil d'interaction à longue-portée et la topologie des réseaux.De Nigris, Sarah 10 June 2014 (has links)
Dans cette thèse, nous discutons l'influence d'un réseau qui possède une topologie non triviale sur les propriétés collectives d'un modèle hamiltonien pour spins,le modèle $XY$, défini sur ces réseaux.Nous nous concentrons d'abord sur la topologie des chaînes régulières et du réseau Petit Monde (Small World), créé avec le modèle Watt- Strogatz.Nous contrôlons ces réseaux par deux paramètres $\gamma$, pour le nombre d' interactions et $p$, la probabilité de ré-attacher un lien aléatoirement.On définit deux mesures, le chemin moyen $\ell$ et la connectivité $C$ et nous analysons leur dépendance de $(\gamma,p)$.Ensuite,nous considérons le comportement du modèle $XY$ sur la chaîne régulière et nous trouvons deux régimes: un pour $\gamma<1,5$,qui ne présente pas d'ordre longue portée et un pour $\gamma>1,5$ où une transition de phase du second ordre apparaît.Nous observons l'existence d'un état métastable pour $\gamma_ {c} = 1,5$. Sur les réseaux Petit Monde,nous illustrons les conditions pour avoir une transition et comment son énergie critique $\varepsilon_{c}(\gamma,p)$ dépend des paramètres $(\gammap$).Enfin,nous proposons un modèle de réseau où les liens d'une chaîne régulière sont ré-attachés aléatoirement avec une probabilité $p$ dans un rayon spécifique $r$. Nous identifions la dimension du réseau $d(p,r)$ comme un paramètre crucial:en le variant,il nous est possible de passer de réseaux avec $d<2$ qui ne présentent pas de transition de phase à des configurations avec $d>2$ présentant une transition de phase du second ordre, en passant par des régimes de dimension $d=2$ qui présentent des états caractérisés par une susceptibilité infinie et une dynamique chaotique. / In this thesis we discuss the influence of a non trivial network topology on the collective properties of an Hamiltonian model defined on it, the $XY$ -rotors model. We first focus on networks topology analysis, considering the regular chain and a Small World network, created with the Watt-Strogatz model. We parametrize these topologies via $\gamma$, giving the vertex degree and $p$, the probability of rewiring. We then define two topological parameters, the average path length $\ell$and the connectivity $C$ and we analize their dependence on $\gamma$ and $p$. Secondly, we consider the behavior of the $XY$- model on the regular chain and we find two regimes: one for $\gamma<1.5$, which does not display any long-range order and one for $\gamma>1.5$ in which a second order phase transition of the magnetization arises. Moreover we observe the existence of a metastable state appearing for $\gamma_{c}=1.5$. Finally we illustrate in what conditions we retrieve the phase transition on Small World networks and how its critical energy $\varepsilon_{c}(\gamma,p)$ depends on the topological parameters $\gamma$ and $p$. In the last part, we propose a network model in which links of a regular chain are rewired according to a probability $p$ within a specific range $r$. We identify a quantity, the network dimension $d(p,r)$ as a crucial parameter. Varying this dimension we are able to cross over from topologies with $d<2$ exhibiting no phase transitions to ones with $d>2$ displaying a second order phase transition, passing by topologies with dimension $d=2$ which exhibit states characterized by infinite susceptibility and macroscopic chaotic dynamical behavior.
|
84 |
Aspectos dinâmicos de espalhamento caótico clássico / Dynamical aspects of classical scatteringSchelin, Adriane Beatriz 23 April 2009 (has links)
A presente tese analisa diferentes aspectos de sistemas de espalhamento clássico com caos. Espalhamento caótico é uma forma de caos transiente que ocorre em diversos sistemas físicos. Nestes sistemas o espaço de fase é aberto, mas o caos ocorre apenas em uma região restrita do espaço, chamada de região de espalhamento. Os efeitos desta dinâmica apresentam-se em qualquer relação de espalhamento pela presença de conjuntos fractais, que geram hiper-sensibilidade a condições iniciais. Em nosso primeiro trabalho, mostramos que as bifurcações que levam ao caos manifestam-se na Seção de Choque Diferencial (SCD) pela criação de infinitas singularidades arco-íris. Estas singularidades aparecem na forma de cascatas, registrando na SCD todas as transições sofridas pela sela caótica. O segundo trabalho mostra que a introdução de dissipação em sistemas de espalhamento pode limitar a autosimilaridade de conjuntos originalmente fractais. Uma partícula espalhada por potenciais repulsivos encontra regiões não acessíveis, que dependem do valor de sua energia. Estas regiões determinam a estrutura da sela caótica. Com a perda de energia, o cenário de órbitas presas é alterado e, dependendo do valor da dissipação, podem existir nas funções de espalhamento estruturas fractais truncadas. O terceiro estudo aborda a presença de advecção caótica em fluxos sanguíneos. Doenças circulatórias estão geralmente associadas a uma mudança de geometria de artérias ou veias. Essas deformações podem gerar espalhamento caótico das partículas sanguíneas carregadas pelo fluxo. Em nosso trabalho mostramos, a partir de simulações numéricas, que caos pode existir em fluxos sanguíneos e, assim, formar um ciclo no desenvolvimento de anomalias circulatórias. / In this thesis we study different scattering systems with chaos. Chaotic scattering, present in a large variety of physical systems, is a type of transient chaos. While the phase-space of such systems is unbounded, irregular motion occurs only in a bounded area, called the scattering region. Still, any (nontrivial) scattering function relating initial conditions to asymptotic variables contains fractal structures, resulting in a very sharp sensitivity to initial conditions. Our first work shows that bifurcations leading to chaos manifest themselves through an infinitely fine-scale structure of rainbow singularities in the cross section. These singularities appear as cascades, mirroring the bifurcation cascade undergone by the chaotic saddle. The second work shows that the presence of dissipation in scattering systems can limit the auto-similarity of originally fractal structures. Depending on the value of their energy, particles scattered by repulsive potentials find forbidden regions in the space-phase. These regions determinate the structure of the chaotic saddle. With friction, the scenario of trapped orbits changes and, depending on the ammount dissipation, scattering functions follow a truncated fractal structure. Our third study concerns the presence of chaotic advection in blood flows. Typically, circulatory diseases are due to sudden changes on the geometry of vessel walls. These deformations can generate chaotic scattering of blood particles carried by the flow. We show, with numerical simulations, that chaos can occur in blood flows and thus form a hazardous cycle in the further developing of circulatory anomalies.
|
85 |
Classical mechanisms of recollision and high harmonic generation / Mécanismes classiques de recollisions et génération d'harmoniques d'ordres élevésBerman, Simon 03 December 2018 (has links)
Trente ans après la démonstration de la production d'harmoniques laser par interaction laser-gaz non linéaire, la génération d'harmoniques d’ordre élevées (HHG) est utilisée pour sonder la dynamique moléculaire et réalise son potentiel technologique comme source compacte d'impulsions attosecondes XUV à la gamme de rayons X. Malgré les progrès expérimentaux, le coût de calcul excessif des simulations fondées sur les premiers principes et la difficulté de dériver systématiquement des modèles réduits pour l'interaction non perturbatif et à échelles multiples d'une impulsion laser intense avec un gaz macroscopique d'atomes ont entravé les efforts théoriques. Dans cette thèse, nous étudions des modèles réduits de premier principe pour HHG utilisant la mécanique classique. En utilisant la dynamique non linéaire, nous élucidons le rôle indispensable joué par le potentiel ionique lors des recollisions dans la limite du champ fort. Ensuite, en empruntant une technique de la physique des plasmas, nous dérivons systématiquement une hiérarchie de modèles hamiltoniens réduits pour l’interaction cohérente entre le laser et les atomes lors de la propagation des impulsions. Les modèles réduits permettent une dynamique électronique soit classique, soit quantique. Nous construisons un modèle classique qui concorde quantitativement avec le modèle quantique pour la propagation des composantes dominantes du champ laser. Dans une géométrie simplifiée, nous montrons que le rayonnement à fréquence anormalement élevée observé dans les simulations résulte de l’interaction délicate entre le piégeage d’électrons et les recollisions de plus grande énergie provoqués par les effets de propagation. / Thirty years after the demonstration of the production of high laser harmonics through nonlinear laser-gas interaction, high harmonic generation (HHG) is being used to probe molecular dynamics in real time and is realizing its technological potential as a tabletop source of attosecond pulses in the XUV to soft X-ray range. Despite experimental progress, theoretical efforts have been stymied by the excessive computational cost of first-principles simulations and the difficulty of systematically deriving reduced models for the non-perturbative, multiscale interaction of an intense laser pulse with a macroscopic gas of atoms. In this thesis, we investigate first-principles reduced models for HHG using classical mechanics. Using nonlinear dynamics, we elucidate the indispensable role played by the ionic potential during recollisions in the strong-field limit. Then, borrowing a technique from plasma physics, we systematically derive a hierarchy of reduced Hamiltonian models for the self-consistent interaction between the laser and the atoms during pulse propagation. The reduced models can accommodate either classical or quantum electron dynamics. We build a classical model which agrees quantitatively with the quantum model for the propagation of the dominant components of the laser field. In a simplified geometry, we show that the anomalously high frequency radiation seen in simulations results from the delicate interplay between electron trapping and higher energy recollisions brought on by propagation effects.
|
86 |
Derivation of planar diffeomorphisms from Hamiltonians with a kickUnknown Date (has links)
In this thesis we will discuss connections between Hamiltonian systems with a periodic kick and planar diffeomorphisms. After a brief overview of Hamiltonian theory we will focus, as an example, on derivations of the Hâenon map that can be obtained by considering kicked Hamiltonian systems. We will conclude with examples of Hâenon maps of interest. / by Zalmond C. Barney. / Thesis (M.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
|
87 |
Energia cinética e pontos de equilíbrio de sistemas hamiltonianos / Kinetic energy and equilibrium points of Hamiltonian systemsRenato Belinelo Bortolatto 03 June 2008 (has links)
Estudaremos uma influência não trivial da energia cinética sobre pontos de equilébrio de sistemas Hamiltonianos a partir da segunda parte do artigo de Garcia & Tal \"The influence of the kinetic energy in equilibrium of Hamiltonian systems\". Nesse artigo demonstra-se, para um exemplo explícito de Hamiltonianos C(R4) definidos por Hi = Ti + para i {1,2}, que as bacias de atração de H1 e H2 são subvariedades de R4 com dimensão distinta. Discutiremos aqui de que forma esse resultado está relacionado com o estudo da estabilidade segundo Liapunov de pontos de equilíbrio de sistemas Hamiltonianos, em especial com a busca de uma inversão para o celebrado teorema de Dirichlet-Lagrange. Por fim apresentamos um novo teorema que estende o resultado acima para toda uma família de energias potenciais ,,k. A saber, mostramos que, se os parâmetros ,,k satisfazem a um simples critério aritmético então as bacias de atração de Hi = Ti + ,,k tem dimensões distintas para i {1, 2}. / We study a non trivial influence of the kinetic energy on equilibrium points of Hamiltonian systems following the second part of Garcia & Tal article \"The influence of the kinetic energy in equilibrium of Hamiltonian systems\". In this article the authors show, for an explicit example of C (R4 ) Hamiltonians defined by Hi = Ti + for i {1, 2}, that the attraction basins of H1 and H2 have distinct dimensions as submanifolds of R4. Well discuss how this result is related to the study of the stability according to Liapunov of equilibrium points of Hamiltonian systems and especially how it is related to the inversion of the celebrated Lagrange-Dirichlet theorem. Finally well prove a new theorem which extends the result above for a whole family of potential energies ,,k. We show that, if the parameters ,,k satisfy a simple arithmetical criteria then the attraction basins of Hi = Ti + ,,k have different dimensions for i {1, 2}.
|
88 |
Instabilidade dinâmica das flutuações eletrostáticas em tokamaks / Dynamic Instability of Fluctuations Electrostatic in tokamaksMarcus, Francisco Alberto 12 September 2002 (has links)
Neste trabalho foi realizado um estudo do transporte de partículas em um plasma, confinado em um campo magnético uniforme, devido às ondas eletrostáticas de deriva. O modelo adotado consiste em descrever o movimento do centro de guia de uma partícula no campo magnético perpendicular a um campo elétrico radial perturbado pelas ondas de deriva. Usamos uma descrição Hamiltoniana para o movimento dos centros de guia. A velocidade de deriva produzida pelo campo elétrico radial é representada pela parte integrável da Hamiltoniana e a esta foram adicionadas perturbações periódicas representando as flutuações do campo elétrico associadas às ondas de deriva. Assim, obtemos órbitas caóticas que determinam o transporte radial das partículas. Apresentamos, para várias condições de equilíbrio, a variação do transporte radial de partículas com a amplitude da perturbação. Utilizamos dados experimentais, sobre a turbulência eletrostática no tokamak TBR-1, para verificar a validade do modelo e a importância das ondas de deriva no transporte radial das partículas. Comparamos os valores do coeficiente de difusão experimental com os do modelo e obtivemos os resultados com a mesma ordem de grandeza. / In this work we have studied the transport of particles in a magnetically confined plasma, due to electrostatic drift waves. The adopted model describes the trajectory of the guiding center of a particle in a uniform magnetic field perpendicular to a radial electric field perturbed by drift waves. We have used the Hamiltonian description for the guiding center trajectory. The drift produced by the radial electric field is represented by the integrable part of the Hamiltonian, while the other part contains periodic perturbations representing the fluctuations of the electric field associated to the drift waves. In this way we obtain chaotic orbits that determine the particles radial transport. For several balance conditions, we present the variation of the radial transport of particles with the amplitude of the perturbation. V/e have used the experimental data of the electrostatic turbulence measured in TBR-1 tokamak to verify, the validity of the model and the importance of the drift waves in the particles radial transport. We have also compared the values of the experimental diffusion coefficient with those provided by using the model, obtaining results with the same order of magnitude.
|
89 |
Energia cinética e pontos de equilíbrio de sistemas hamiltonianos / Kinetic energy and equilibrium points of Hamiltonian systemsBortolatto, Renato Belinelo 03 June 2008 (has links)
Estudaremos uma influência não trivial da energia cinética sobre pontos de equilébrio de sistemas Hamiltonianos a partir da segunda parte do artigo de Garcia & Tal \"The influence of the kinetic energy in equilibrium of Hamiltonian systems\". Nesse artigo demonstra-se, para um exemplo explícito de Hamiltonianos C(R4) definidos por Hi = Ti + para i {1,2}, que as bacias de atração de H1 e H2 são subvariedades de R4 com dimensão distinta. Discutiremos aqui de que forma esse resultado está relacionado com o estudo da estabilidade segundo Liapunov de pontos de equilíbrio de sistemas Hamiltonianos, em especial com a busca de uma inversão para o celebrado teorema de Dirichlet-Lagrange. Por fim apresentamos um novo teorema que estende o resultado acima para toda uma família de energias potenciais ,,k. A saber, mostramos que, se os parâmetros ,,k satisfazem a um simples critério aritmético então as bacias de atração de Hi = Ti + ,,k tem dimensões distintas para i {1, 2}. / We study a non trivial influence of the kinetic energy on equilibrium points of Hamiltonian systems following the second part of Garcia & Tal article \"The influence of the kinetic energy in equilibrium of Hamiltonian systems\". In this article the authors show, for an explicit example of C (R4 ) Hamiltonians defined by Hi = Ti + for i {1, 2}, that the attraction basins of H1 and H2 have distinct dimensions as submanifolds of R4. Well discuss how this result is related to the study of the stability according to Liapunov of equilibrium points of Hamiltonian systems and especially how it is related to the inversion of the celebrated Lagrange-Dirichlet theorem. Finally well prove a new theorem which extends the result above for a whole family of potential energies ,,k. We show that, if the parameters ,,k satisfy a simple arithmetical criteria then the attraction basins of Hi = Ti + ,,k have different dimensions for i {1, 2}.
|
90 |
Transporte de partículas no Texas Helimak / Particle Transport In Texas HelimakFerro, Rafael Minatogau 14 March 2016 (has links)
Através de um mapa de ondas de deriva, estudamos o transporte de partículas no Texas Helimak, considerando diversos perfis do campo elétrico radial. O Texas Helimak é um equipamento de confinamento magnético caracterizado por linhas de campo helicoidais e que fornece uma aproximação experimental de um plasma unidimensional. Ele possibilita a imposição de um potencial elétrico externo ao plasma, chamado bias, que altera o perfil radial do campo elétrico de equilíbrio e, consequentemente, possui influência sobre as características de transporte no plasma. Para estudar o efeito do bias sobre o transporte, utilizamos um modelo que considera flutuações eletrostáticas, associadas à deriva E x B, como mecanismo de turbulência. Com isso, introduzimos um mapa de ondas de deriva, cujos parâmetros estão relacionados a dados experimentais para diversos valores de bias. Assim, ao variar o bias, pudemos observar a formação e a destruição da curva sem shear, bem como seu efeito sobre o transporte das trajetórias no espaço de fase. / Using a drift wave map, we studied the particle transport in Texas Helimak considering various electric field radial profiles. Texas Helimak is a device for magnetic confinement characterized by helical field lines, and constitutes an experimental approximation to a one-dimensional plasma. It allows for the imposing of an external electric potential, known as bias, which changes the equilibrium electric field radial profile and hence the transport properties of the plasma. In order to study the effects of the bias potential on the particle transport, we used a model with electrostatic fluctuations associated to E x B drift as the turbulence mechanism. Thus, we introduced a drift wave map whose parameters are related to experimental data for various values of bias. Therefore, by varying the bias, we observed the formation and destruction of the shearless curve, as well as its effects on trajectories transport in the map\'s phase space.
|
Page generated in 0.088 seconds