• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Class-dependent features and multicategory classification

Bailey, Alex January 2001 (has links)
No description available.
2

Handwritten digit recognition based on segmentation-free method

Zhao, Mengqiao January 2020 (has links)
This thesis aims to implement a segmentation-free strategy in the context of handwritten multi-digit string recognition. Three models namely VGG-16, CRNN and 4C are built to be evaluated and benchmarked, also research about the effect of the different training set on model performance is carried out.
3

Support Vector Machines for Classification and Imputation

Rogers, Spencer David 16 May 2012 (has links) (PDF)
Support vector machines (SVMs) are a powerful tool for classification problems. SVMs have only been developed in the last 20 years with the availability of cheap and abundant computing power. SVMs are a non-statistical approach and make no assumptions about the distribution of the data. Here support vector machines are applied to a classic data set from the machine learning literature and the out-of-sample misclassification rates are compared to other classification methods. Finally, an algorithm for using support vector machines to address the difficulty in imputing missing categorical data is proposed and its performance is demonstrated under three different scenarios using data from the 1997 National Labor Survey.
4

Multivariate analysis of the parameters in a handwritten digit recognition LSTM system / Multivariat analys av parametrarna i ett LSTM-system för igenkänning av handskrivna siffror

Zervakis, Georgios January 2019 (has links)
Throughout this project, we perform a multivariate analysis of the parameters of a long short-term memory (LSTM) system for handwritten digit recognition in order to understand the model’s behaviour. In particular, we are interested in explaining how this behaviour precipitate from its parameters, and what in the network is responsible for the model arriving at a certain decision. This problem is often referred to as the interpretability problem, and falls under scope of Explainable AI (XAI). The motivation is to make AI systems more transparent, so that we can establish trust between humans. For this purpose, we make use of the MNIST dataset, which has been successfully used in the past for tackling digit recognition problem. Moreover, the balance and the simplicity of the data makes it an appropriate dataset for carrying out this research. We start by investigating the linear output layer of the LSTM, which is directly associated with the models’ predictions. The analysis includes several experiments, where we apply various methods from linear algebra such as principal component analysis (PCA) and singular value decomposition (SVD), to interpret the parameters of the network. For example, we experiment with different setups of low-rank approximations of the weight output matrix, in order to see the importance of each singular vector for each class of the digits. We found out that cutting off the fifth left and right singular vectors the model practically losses its ability to predict eights. Finally, we present a framework for analysing the parameters of the hidden layer, along with our implementation of an LSTM based variational autoencoder that serves this purpose. / I det här projektet utför vi en multivariatanalys av parametrarna för ett long short-term memory system (LSTM) för igenkänning av handskrivna siffror för att förstå modellens beteende. Vi är särskilt intresserade av att förklara hur detta uppträdande kommer ur parametrarna, och vad i nätverket som ligger bakom den modell som kommer fram till ett visst beslut. Detta problem kallas ofta för interpretability problem och omfattas av förklarlig AI (XAI). Motiveringen är att göra AI-systemen öppnare, så att vi kan skapa förtroende mellan människor. I detta syfte använder vi MNIST-datamängden, som tidigare framgångsrikt har använts för att ta itu med problemet med igenkänning av siffror. Dessutom gör balansen och enkelheten i uppgifterna det till en lämplig uppsättning uppgifter för att utföra denna forskning. Vi börjar med att undersöka det linjära utdatalagret i LSTM, som är direkt kopplat till modellernas förutsägelser. Analysen omfattar flera experiment, där vi använder olika metoder från linjär algebra, som principalkomponentanalys (PCA) och singulärvärdesfaktorisering (SVD), för att tolka nätverkets parametrar. Vi experimenterar till exempel med olika uppsättningar av lågrangordnade approximationer av viktutmatrisen för att se vikten av varje enskild vektor för varje klass av siffrorna. Vi upptäckte att om man skär av den femte vänster och högervektorn förlorar modellen praktiskt taget sin förmåga att förutsäga siffran åtta. Slutligen lägger vi fram ett ramverk för analys av parametrarna för det dolda lagret, tillsammans med vårt genomförande av en LSTM-baserad variational autoencoder som tjänar detta syfte.
5

Automatic Handwritten Digit Recognition On Document Images Using Machine Learning Methods

Challa, Akkireddy January 2019 (has links)
Context: The main purpose of this thesis is to build an automatic handwritten digit recognition method for the recognition of connected handwritten digit strings. To accomplish the recognition task, first, the digits were segmented into individual digits. Then, a digit recognition module is employed to classify each segmented digit completing the handwritten digit string recognition task. In this study, different machine learning methods, which are SVM, ANN and CNN architectures are used to achieve high performance on the digit string recognition problem. In these methods, images of digit strings are trained with the SVM, ANN and CNN model with HOG feature vectors and Deep learning methods structure by sliding a fixed size window through the images labeling each sub-image as a part of a digit or not. After the completion of the segmentation, to achieve the complete recognition of handwritten digits.Objective: The main purpose of this thesis is to find out the recognition performance of the methods. In order to analyze the performance of the methods, data is needed to be used for training using machine learning methods. Then digit data is tested on the desired machine learning technique. In this thesis, the following methods are performed: Implementation of HOG Feature extraction method with SVM Implementation of HOG Feature extraction method with ANN Implementation of Deep Learning methods with CNN Methods: This research will be carried out using two methods. The first research method is the ¨Literature Review¨ and the second ¨Experiment¨. Initially, a literature review is conducted to get a clear knowledge on the algorithms and techniques which will be used to answer the first research question i.e., to know which type of data is required for the machine learning methods and the data analysis is performed. Later on, with the knowledge of RQ1, Experimentation is conducted to answer the RQ2, RQ3, RQ4. Quantitative data is used to perform the experimentation because qualitative data which obtains from case-study and survey cannot be used for this experiment method as it contains non-numerical data. In this research, an experiment is conducted to find the best suitable machine learning method from the existing methods. As mentioned above in the objectives, an experiment is conducted using SVM, ANN, and CNN. By considering the results obtained from the experiment, a comparison is made on the metrics considered which results in CNN as the best method suitable for Documents Images. Results: Compare the results for SVM, ANN with HOG Feature extraction and the CNN method by using segmented results. Based on the Experiment results it is found that SVM and ANN have some drawbacks like low accuracy and low performance in the recognition of documented images. So, the other method i.e., CNN has greater performance with high accuracy. The following are the results of the recognition rates of each method. SVM performance - 39% ANN performance - 37% CNN performance - 71%. Conclusion: This research concentrates on providing an efficient method for recognition of automatic handwritten digits recognition. Here a sample training data is treated with existing machine learning and deep learning methods like SVM, ANN, and CNN. By the results obtained from the experimentation, it clearly is shown that the CNN method is much efficient with 71% performance when compared to ANN and SVM methods. Keywords: Handwritten Digit Recognition, Handwritten Digit Segmentation, Handwritten Digit Classification, Machine Learning Methods, Deep Learning, Image processing on document images, Support Vector Machine, Conventional Neural Networks, Artificial Neural Networks
6

Leveraging noisy side information for disentangling of factors of variation in a supervised setting

Carrier, Pierre Luc 08 1900 (has links)
No description available.

Page generated in 0.1166 seconds