1 |
Adaptivní rozpoznávání ručně psaného textu / Adaptive Handwritten Text RecognitionProcházka, Štěpán January 2021 (has links)
The need to preserve and exchange written information is central to the human society, with handwriting satisfying such need for several past millenia. Unlike optical character recognition of typeset fonts, which has been throughly studied in the last few decades, the task of handwritten text recognition, being considerably harder, lacks such attention. In this work, we study the capabilities of deep convolutional and recurrent neural networks to solve handwritten text extraction. To mitigate the need for large quantity of real ground truth data, we propose a suitable synthetic data generator for model pre-training, and carry out extensive set of experiments to devise a self-training strategy to adapt the model to unnanotated real handwritten letterings. The proposed approach is compared to supervised approaches and state-of-the-art results on both established and novel datasets, achieving satisfactory performance. 1
|
2 |
Les différences entre la correction de textes manuscrits et la correction de textes dactylographiés et imprimés par ordinateurGodin, Caroline January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
3 |
Les différences entre la correction de textes manuscrits et la correction de textes dactylographiés et imprimés par ordinateurGodin, Caroline January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
4 |
Layout Detection and Table Recognition: Recent Challenges in Digitizing Historical Documents and Handwritten Tabular DataLehenmeier, Constantin, Burghardt, Manuel, Mischka, Bernadette 11 June 2024 (has links)
In this paper, we discuss the computer-aided processing of handwritten tabular
records of historical weather data. The observationes meteorologicae, which are housed by the
Regensburg University Library, are one of the oldest collections of weather data in Europe.
Starting in 1771, meteorological data was consistently documented in a standardized form
over almost 60 years by several writers. The tabular structure, as well as the unconstrained
textual layout of comments and the use of historical characters, propose various challenges
in layout and text recognition. We present a customized strategy to digitize tabular and
handwritten data by combining various state-of-the-art methods for OCR processing to fit
the collection. Since the recognition of historical documents still poses major challenges,
we provide lessons learned from experimental testing during the first project stages. Our
results show that deep learning methods can be used for text recognition and layout detection.
However, they are less efficient for the recognition of tabular structures. Furthermore,
a tailored approach had to be developed for the historical meteorological characters during
the manual creation of ground truth data. The customized system achieved an accuracy
rate of 82% for the text recognition of the heterogeneous handwriting and 87% accuracy
for layout recognition of the tables.
|
5 |
Multimodal Interactive Transcription of Handwritten Text ImagesRomero Gómez, Verónica 20 September 2010 (has links)
En esta tesis se presenta un nuevo marco interactivo y multimodal para la transcripción de
Documentos manuscritos. Esta aproximación, lejos de proporcionar la transcripción completa
pretende asistir al experto en la dura tarea de transcribir.
Hasta la fecha, los sistemas de reconocimiento de texto manuscrito disponibles no proporcionan
transcripciones aceptables por los usuarios y, generalmente, se requiere la intervención
del humano para corregir las transcripciones obtenidas. Estos sistemas han demostrado ser
realmente útiles en aplicaciones restringidas y con vocabularios limitados (como es el caso
del reconocimiento de direcciones postales o de cantidades numéricas en cheques bancarios),
consiguiendo en este tipo de tareas resultados aceptables. Sin embargo, cuando se trabaja
con documentos manuscritos sin ningún tipo de restricción (como documentos manuscritos
antiguos o texto espontáneo), la tecnología actual solo consigue resultados inaceptables.
El escenario interactivo estudiado en esta tesis permite una solución más efectiva. En este
escenario, el sistema de reconocimiento y el usuario cooperan para generar la transcripción final
de la imagen de texto. El sistema utiliza la imagen de texto y una parte de la transcripción
previamente validada (prefijo) para proponer una posible continuación. Despues, el usuario
encuentra y corrige el siguente error producido por el sistema, generando así un nuevo prefijo
mas largo. Este nuevo prefijo, es utilizado por el sistema para sugerir una nueva hipótesis. La
tecnología utilizada se basa en modelos ocultos de Markov y n-gramas. Estos modelos son
utilizados aquí de la misma manera que en el reconocimiento automático del habla. Algunas
modificaciones en la definición convencional de los n-gramas han sido necesarias para tener
en cuenta la retroalimentación del usuario en este sistema. / Romero Gómez, V. (2010). Multimodal Interactive Transcription of Handwritten Text Images [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8541
|
6 |
Vyhodnocení testových formulářů pomocí OCR / Test form evaluation by OCRNoghe, Petr January 2013 (has links)
This thesis deals with the evaluation forms using optical character recognition. Image processing and methods used for OCR is described in the first part of thesis. In the practical part is created database of sample characters. The chosen method is based on correlation between patterns and recognized characters. The program is designed in a graphical environment MATLAB. Finally, several forms are evaluated and success rate of the proposed program is detected.
|
7 |
CArDIS: A Swedish Historical Handwritten Character and Word Dataset for OCRThummanapally, Shivani, Rijwan, Sakib January 2022 (has links)
Background: To preserve valuable sources and cultural heritage, digitization of handwritten characters is crucial. For this, Optical Character Recognition (OCR) systems were introduced and most widely used to recognize digital characters. Incase of ancient or historical characters, automatic transcription is more challenging due to lack of data, high complexity and low quality of the resource. To solve these problems, multiple image based handwritten dataset were collected from historicaland modern document images. But these dataset also have some limitations. To overcome the limitations, we were inspired to create a new image-based historical handwritten character and word dataset and evaluate it’s performance using machine learning algorithms. Objectives: The main objective of this thesis is to create a first ever Swedish historical handwritten character and word dataset named CArDIS (Character Arkiv Digital Sweden) which will be publicly available for further research. In addition,verify the correctness of the dataset and perform a quantitative analysis using different machine learning methods. Methods: Initially we searched for existing character dataset to know how modern character dataset differs from the historical handwritten dataset. We have performed literature review to learn about most commonly used dataset for OCR. On the other hand, we have also studied different machine learning algorithms and their applica-tions. Finally, we have trained six different machine learning methods namely Support Vector Machine, k-Nearest Neighbor, Convolutional Neural Network, Recurrent Neural Network, Random Forest, SVM-HOG with existing dataset and newly created dataset to evaluate the performance and efficiency of recognizing ancient handwritten characters. Results: The performance/evaluation results show that the machine learning classifiers struggle to recognise the ancient handwritten characters with less recognition accuracy. Out of which CNN outperforms with highest recognition accuracy. Conclusions: The current thesis introduces first ever newly created historical hand-written character and word dataset in Swedish named CArDIS. The character dataset contains 1,01,500 Latin and Swedish character images belonging to 29 classes while the word dataset contains 10,000 word images containing ten popular Swedish names belonging to 10 classes in RGB color space. Also, the performance of six machine learning classifiers on CArDIS and existing datasets have been reported. The thesis concludes that classifiers when trained on existing dataset and tested on CArDIS dataset show low recognition accuracy proving that, the CArDIS dataset have unique characteristics and features over the existing handwritten datasets. Finally, this re-search provided a first Swedish character and word dataset, which is robust with a proven accuracy; also it is publicly available for further research.
|
8 |
Semi-automatic Segmentation & Alignment of Handwritten Historical Text Images with the use of Bayesian OptimisationMacCormack, Philip January 2023 (has links)
To effortlessly digitise historical documents has risen to be of great interest for some time. Part of the digitisation is what is called annotating of the data. Such data annotations are obtained in a process called alignment which links words in an image to the transcript. Annotated data have many use cases such as being used in the training of handwritten text recognition models. Relevant to the application above, this project aimed to develop an interactive algorithm for the segmentation and alignment of historical document images. Two different developed methods (referred to as method 1 and method 2) were evaluated and compared on two different data sets Labour’sMemory and IAM. A method to incorporate self-learning was also developed and evaluated with Bayesian optimisation aimed at automatically setting parameters for the algorithm. The results proved that the algorithms perform better on the IAM data set, which could partly be explained by the difference in quality of the ground truth used for calculation of the performance metrics. Moreover, method 2 slightly outperformed method 1 for both data sets. Bayesian optimisation proved to be a reasonable, and more time efficient way of effectively setting parameters compared to manually finding parameters for each document. The work done in this project could serve as the basis for the future development of a useful and interactive tool for the alignment of text documents.
|
9 |
Advances on the Transcription of Historical Manuscripts based on Multimodality, Interactivity and CrowdsourcingGranell Romero, Emilio 01 September 2017 (has links)
Natural Language Processing (NLP) is an interdisciplinary research field of Computer Science, Linguistics, and Pattern Recognition that studies, among others, the use of human natural languages in Human-Computer Interaction (HCI). Most of NLP research tasks can be applied for solving real-world problems. This is the case of natural language recognition and natural language translation, that can be used for building automatic systems for document transcription and document translation.
Regarding digitalised handwritten text documents, transcription is used to obtain an easy digital access to the contents, since simple image digitalisation only provides, in most cases, search by image and not by linguistic contents (keywords, expressions, syntactic or semantic categories). Transcription is even more important in historical manuscripts, since most of these documents are unique and the preservation of their contents is crucial for cultural and historical reasons.
The transcription of historical manuscripts is usually done by paleographers, who are experts on ancient script and vocabulary. Recently, Handwritten Text Recognition (HTR) has become a common tool for assisting paleographers in their task, by providing a draft transcription that they may amend with more or less sophisticated methods. This draft transcription is useful when it presents an error rate low enough to make the amending process more comfortable than a complete transcription from scratch. Thus, obtaining a draft transcription with an acceptable low error rate is crucial to have this NLP technology incorporated into the transcription process.
The work described in this thesis is focused on the improvement of the draft transcription offered by an HTR system, with the aim of reducing the effort made by paleographers for obtaining the actual transcription on digitalised historical manuscripts.
This problem is faced from three different, but complementary, scenarios:
· Multimodality: The use of HTR systems allow paleographers to speed up the manual transcription process, since they are able to correct on a draft transcription. Another alternative is to obtain the draft transcription by dictating the contents to an Automatic Speech Recognition (ASR) system. When both sources (image and speech) are available, a multimodal combination is possible and an iterative process can be used in order to refine the final hypothesis.
· Interactivity: The use of assistive technologies in the transcription process allows one to reduce the time and human effort required for obtaining the actual transcription, given that the assistive system and the palaeographer cooperate to generate a perfect transcription.
Multimodal feedback can be used to provide the assistive system with additional sources of information by using signals that represent the whole same sequence of words to transcribe (e.g. a text image, and the speech of the dictation of the contents of this text image), or that represent just a word or character to correct (e.g. an on-line handwritten word).
· Crowdsourcing: Open distributed collaboration emerges as a powerful tool for massive transcription at a relatively low cost, since the paleographer supervision effort may be dramatically reduced. Multimodal combination allows one to use the speech dictation of handwritten text lines in a multimodal crowdsourcing platform, where collaborators may provide their speech by using their own mobile device instead of using desktop or laptop computers, which makes it possible to recruit more collaborators. / El Procesamiento del Lenguaje Natural (PLN) es un campo de investigación interdisciplinar de las Ciencias de la Computación, Lingüística y Reconocimiento de Patrones que estudia, entre otros, el uso del lenguaje natural humano en la interacción Hombre-Máquina. La mayoría de las tareas de investigación del PLN se pueden aplicar para resolver problemas del mundo real. Este es el caso del reconocimiento y la traducción del lenguaje natural, que se pueden utilizar para construir sistemas automáticos para la transcripción y traducción de documentos.
En cuanto a los documentos manuscritos digitalizados, la transcripción se utiliza para facilitar el acceso digital a los contenidos, ya que la simple digitalización de imágenes sólo proporciona, en la mayoría de los casos, la búsqueda por imagen y no por contenidos lingüísticos. La transcripción es aún más importante en el caso de los manuscritos históricos, ya que la mayoría de estos documentos son únicos y la preservación de su contenido es crucial por razones culturales e históricas.
La transcripción de manuscritos históricos suele ser realizada por paleógrafos, que son personas expertas en escritura y vocabulario antiguos. Recientemente, los sistemas de Reconocimiento de Escritura (RES) se han convertido en una herramienta común para ayudar a los paleógrafos en su tarea, la cual proporciona un borrador de la transcripción que los paleógrafos pueden corregir con métodos más o menos sofisticados. Este borrador de transcripción es útil cuando presenta una tasa de error suficientemente reducida para que el proceso de corrección sea más cómodo que una completa transcripción desde cero. Por lo tanto, la obtención de un borrador de transcripción con una baja tasa de error es crucial para que esta tecnología de PLN sea incorporada en el proceso de transcripción.
El trabajo descrito en esta tesis se centra en la mejora del borrador de transcripción ofrecido por un sistema RES, con el objetivo de reducir el esfuerzo realizado por los paleógrafos para obtener la transcripción de manuscritos históricos digitalizados.
Este problema se enfrenta a partir de tres escenarios diferentes, pero complementarios:
· Multimodalidad: El uso de sistemas RES permite a los paleógrafos acelerar el proceso de transcripción manual, ya que son capaces de corregir en un borrador de la transcripción. Otra alternativa es obtener el borrador de la transcripción dictando el contenido a un sistema de Reconocimiento Automático de Habla. Cuando ambas fuentes están disponibles, una combinación multimodal de las mismas es posible y se puede realizar un proceso iterativo para refinar la hipótesis final.
· Interactividad: El uso de tecnologías asistenciales en el proceso de transcripción permite reducir el tiempo y el esfuerzo humano requeridos para obtener la transcripción correcta, gracias a la cooperación entre el sistema asistencial y el paleógrafo para obtener la transcripción perfecta. La realimentación multimodal se puede utilizar en el sistema asistencial para proporcionar otras fuentes de información adicionales con señales que representen la misma secuencia de palabras a transcribir (por ejemplo, una imagen de texto, o la señal de habla del dictado del contenido de dicha imagen de texto), o señales que representen sólo una palabra o carácter a corregir (por ejemplo, una palabra manuscrita mediante una pantalla táctil).
· Crowdsourcing: La colaboración distribuida y abierta surge como una poderosa herramienta para la transcripción masiva a un costo relativamente bajo, ya que el esfuerzo de supervisión de los paleógrafos puede ser drásticamente reducido. La combinación multimodal permite utilizar el dictado del contenido de líneas de texto manuscrito en una plataforma de crowdsourcing multimodal, donde los colaboradores pueden proporcionar las muestras de habla utilizando su propio dispositivo móvil en lugar de usar ordenadores, / El Processament del Llenguatge Natural (PLN) és un camp de recerca interdisciplinar de les Ciències de la Computació, la Lingüística i el Reconeixement de Patrons que estudia, entre d'altres, l'ús del llenguatge natural humà en la interacció Home-Màquina. La majoria de les tasques de recerca del PLN es poden aplicar per resoldre problemes del món real. Aquest és el cas del reconeixement i la traducció del llenguatge natural, que es poden utilitzar per construir sistemes automàtics per a la transcripció i traducció de documents.
Quant als documents manuscrits digitalitzats, la transcripció s'utilitza per facilitar l'accés digital als continguts, ja que la simple digitalització d'imatges només proporciona, en la majoria dels casos, la cerca per imatge i no per continguts lingüístics (paraules clau, expressions, categories sintàctiques o semàntiques). La transcripció és encara més important en el cas dels manuscrits històrics, ja que la majoria d'aquests documents són únics i la preservació del seu contingut és crucial per raons culturals i històriques.
La transcripció de manuscrits històrics sol ser realitzada per paleògrafs, els quals són persones expertes en escriptura i vocabulari antics. Recentment, els sistemes de Reconeixement d'Escriptura (RES) s'han convertit en una eina comuna per ajudar els paleògrafs en la seua tasca, la qual proporciona un esborrany de la transcripció que els paleògrafs poden esmenar amb mètodes més o menys sofisticats. Aquest esborrany de transcripció és útil quan presenta una taxa d'error prou reduïda perquè el procés de correcció siga més còmode que una completa transcripció des de zero. Per tant, l'obtenció d'un esborrany de transcripció amb un baixa taxa d'error és crucial perquè aquesta tecnologia del PLN siga incorporada en el procés de transcripció.
El treball descrit en aquesta tesi se centra en la millora de l'esborrany de la transcripció ofert per un sistema RES, amb l'objectiu de reduir l'esforç realitzat pels paleògrafs per obtenir la transcripció de manuscrits històrics digitalitzats.
Aquest problema s'enfronta a partir de tres escenaris diferents, però complementaris:
· Multimodalitat: L'ús de sistemes RES permet als paleògrafs accelerar el procés de transcripció manual, ja que són capaços de corregir un esborrany de la transcripció. Una altra alternativa és obtenir l'esborrany de la transcripció dictant el contingut a un sistema de Reconeixement Automàtic de la Parla. Quan les dues fonts (imatge i parla) estan disponibles, una combinació multimodal és possible i es pot realitzar un procés iteratiu per refinar la hipòtesi final.
· Interactivitat: L'ús de tecnologies assistencials en el procés de transcripció permet reduir el temps i l'esforç humà requerits per obtenir la transcripció real, gràcies a la cooperació entre el sistema assistencial i el paleògraf per obtenir la transcripció perfecta. La realimentació multimodal es pot utilitzar en el sistema assistencial per proporcionar fonts d'informació addicionals amb senyals que representen la mateixa seqüencia de paraules a transcriure (per exemple, una imatge de text, o el senyal de parla del dictat del contingut d'aquesta imatge de text), o senyals que representen només una paraula o caràcter a corregir (per exemple, una paraula manuscrita mitjançant una pantalla tàctil).
· Crowdsourcing: La col·laboració distribuïda i oberta sorgeix com una poderosa eina per a la transcripció massiva a un cost relativament baix, ja que l'esforç de supervisió dels paleògrafs pot ser reduït dràsticament. La combinació multimodal permet utilitzar el dictat del contingut de línies de text manuscrit en una plataforma de crowdsourcing multimodal, on els col·laboradors poden proporcionar les mostres de parla utilitzant el seu propi dispositiu mòbil en lloc d'utilitzar ordinadors d'escriptori o portàtils, la qual cosa permet ampliar el nombr / Granell Romero, E. (2017). Advances on the Transcription of Historical Manuscripts based on Multimodality, Interactivity and Crowdsourcing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86137
|
10 |
OCR of hand-written transcriptions of hieroglyphic textNederhof, Mark-Jan 20 April 2016 (has links) (PDF)
Encoding hieroglyphic texts is time-consuming. If a text already exists as hand-written transcription, there is an alternative, namely OCR. Off-the-shelf OCR systems seem difficult to adapt to the peculiarities of Ancient Egyptian. Presented is a proof-of-concept tool that was designed to digitize texts of Urkunden IV in the hand-writing of Kurt Sethe. It automatically recognizes signs and produces a normalized encoding, suitable for storage in a database, or for printing on a screen or on paper, requiring little manual correction.
The encoding of hieroglyphic text is RES (Revised Encoding Scheme) rather than (common dialects of) MdC (Manuel de Codage). Earlier papers argued against MdC and in favour of RES for corpus development. Arguments in favour of RES include longevity of the encoding, as its semantics are font-independent. The present study provides evidence that RES is also much preferable to MdC in the context of OCR. With a well-understood parsing technique, relative positioning of scanned signs can be straightforwardly mapped to suitable primitives of the encoding.
|
Page generated in 0.1178 seconds