• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 16
  • 13
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Systém pro haptickou odezvu a jeho spolehlivost / Haptic Feedback System and its Reliability

Horpatzká, Michaela January 2019 (has links)
This master thesis covers conceptual design of haptic feedback system and safety and reliability assessment. System is developed for aircraft categories UL2, EASA CS-LSA, EASA CS-VLA and EASA-CS-23. Conceptual design is divided into three parts. First is aimed on haptic system test with simulator. Second is conceptual design of haptic system for in-flight test. Third part contains safety and reliability assessment and summarizes problems of haptic system installation in real aircraft.
42

TOWARDS IMPROVING TELETACTION IN TELEOPERATION TASKS USING VISION-BASED TACTILE SENSORS

Oscar Jia Jun Yu (18391263) 01 May 2024 (has links)
<p dir="ltr">Teletaction, the transmission of tactile feedback or touch, is a crucial aspect in the</p><p dir="ltr">field of teleoperation. High-quality teletaction feedback allows users to remotely manipulate</p><p dir="ltr">objects and increase the quality of the human-machine interface between the operator and</p><p dir="ltr">the robot, making complex manipulation tasks possible. Advances in the field of teletaction</p><p dir="ltr">for teleoperation however, have yet to make full use of the high-resolution 3D data provided</p><p dir="ltr">by modern vision-based tactile sensors. Existing solutions for teletaction lack in one or more</p><p dir="ltr">areas of form or function, such as fidelity or hardware footprint. In this thesis, we showcase</p><p dir="ltr">our research into a low-cost teletaction device for teleoperation that can utilize the real-time</p><p dir="ltr">high-resolution tactile information from vision-based tactile sensors, through both physical</p><p dir="ltr">3D surface reconstruction and shear displacement. We present our device, the Feelit, which</p><p dir="ltr">uses a combination of a pin-based shape display and compliant mechanisms to accomplish</p><p dir="ltr">this task. The pin-based shape display utilizes an array of 24 servomotors with miniature</p><p dir="ltr">Bowden cables, giving the device a resolution of 6x4 pins in a 15x10 mm display footprint.</p><p dir="ltr">Each pin can actuate up to 3 mm in 200 ms, while providing 80 N of force and 3 um of</p><p dir="ltr">depth resolution. Shear displacement and rotation is achieved using a compliant mechanism</p><p dir="ltr">design, allowing a minimum of 1 mm displacement laterally and 10 degrees of rotation. This</p><p dir="ltr">real-time 3D tactile reconstruction is achieved with the use of a vision-based tactile sensor,</p><p dir="ltr">the GelSight, along with an algorithm that samples the depth data and marker tracking to</p><p dir="ltr">generate actuator commands. With our device we perform a series of experiments including</p><p dir="ltr">shape recognition and relative weight identification, showing that our device has the potential</p><p dir="ltr">to expand teletaction capabilities in the teleoperation space.</p>
43

Admittance and impedance haptic control for realization of digital clay as an effective human machine interface (HMI) device

Ngoo, Cheng Shu 17 November 2009 (has links)
Shape plays an important role in our everyday life to interpret information about the surroundings whether we are aware or not. Together with visual and auditory information, we are able to obtain and process information for different purposes. Output devices such as monitors and speakers convey visual and auditory information while input devices such as touch screen and microphones receive that information for human machine interaction. Such devices have become commonplace but there has yet to be a fitting input/output device utilizing our haptic perception. Digital Clay is a next generation Human Machine Interface (HMI) device for 2.5D shape input/output via an array of hydraulic actuators. This device potentially has wide applications in the areas of engineering, sciences, medicine, military, entertainment etc. The user can perceive the shape of a computer programmed model in a tangible and concrete manner which means an added realism with the addition of the sense of touch. Conversely, the user can also use Digital Clay as an input device to the computer, by shaping and molding desired shapes on the device, no longer limited to drawing models with a mouse on CAD software. Shape display has been achieved with the current 5x5 prototype at the Georgia Institute of Technology but this research seeks to expand its capability to include haptic feedback and consequently shaping mode. This thesis gives an overview of the current 5x5 prototype and implements 2 commonly used haptic control methods, the admittance control and the impedance control. For implementing the admittance control, actuator displacement and velocity controllers and a proportional integral observer (PIO) are designed. The model-based unknown input observer is a solution for force estimation without added sensors in the actuators. For implementing the impedance control, a novel pressure control technique is designed to provide pressure feedback to the actuators array along with accurate and reliable displacement measurement. Both of the haptic control methods are evaluated, hardware and software limitations are outlined and possible future improvements are suggested.

Page generated in 0.0567 seconds