• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 13
  • 7
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 42
  • 21
  • 18
  • 18
  • 17
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Regeneration responses to management for old-growth characteristics in northern hardwood-conifer forests

Gottesman, Aviva Joy 01 January 2017 (has links)
Silviculture practices interact with multiple sources of variability to influence regeneration trends in northern hardwood forests. There is uncertainty whether low-intensity selection harvesting techniques will result in desirable tree regeneration. Our research is part of a long-term study that tests the hypothesis that a silvicultural approach called "structural complexity enhancement" (SCE) can promote accelerated development of late-successional forest structure and functions. Our objective is to understand the regeneration dynamics following three uneven-aged forestry treatments modified to increase postharvest structural retention: single-tree selection, group selection, and SCE. In terms of regeneration densities and composition, how do light availability, competition, seedbad, and herbivory interact with overstory treatment effects? To explore these relationships, manipulations and controls were replicated across 2-hectare treatment units at two sites in Vermont, USA. Forest inventory data were collected pre-harvest and 13 years post-harvest. We used linear mixed effects models with repeated measures to evaluate the effects of treatment on seedling and sapling abundances and diversity (Shannon-Weiner H'). Multivariate analyses evaluated the relative predictive strength of treatment versus alternative sources of ecological variability. Thirteen-years post-harvest, the harvested treatments were all successful in recruiting a sapling class with a significantly higher mean than the control. However, in all of the treatments prolific beech regeneration dominated the understory in patches. Seedling densities exhibited pulses of recruitment and mortality with a significant positive treatment effect on all harvested treatments in the first four years post-harvest. Seedling diversity was maintained, while sapling diversity was negatively influenced by herbivory (deer and moose browse) and leaf litter substrate. Multivariate analyses suggest that while treatment had a dominant effect, other factors were strongly influential in driving regeneration responses. Results indicate variants of uneven-aged systems that retain or enhance stand structural complexity, including old-growth characteristics, generally regenerate at adequate and desirable densities depending on site conditions.
52

SAWING STRATEGIES FOR TROPICAL HARDWOOD SPECIES : Simulation studies based on industrial conditions of Mozambique

Ah Shenga, Pedro January 2016 (has links)
The harvesting of Mozambique tropical hardwood species is considerable higher than the natural regrowth in the forest and the stock is decreasing drastically. Therefore, it is important to improve the material recovery when the wood is refined (i.e., in sawing and further refinement to products such as joineries, furniture etc.) to reduce the waste and to re-utilize efficiently the by-products to increase the added value. The wood processing industry is an important means to boost the industries in the rural areas and also to generate incomes for the local communities by creating jobs and business opportunities. The majority of the logging that can be used for sawmilling in Mozambique is exported as roundwood due to the inability of companies to meet the product standards set for export and to generate profit. The lack of capabilities of the local sawmills to generate profit, also foments the illegal logging because of the higher price of roundwood for export which contributes to increase the number of unlicensed individuals in harvesting. This threatens the law enforcement and thus the degradation of the local wood industry. An alternative to increase the profit and empower the local community could be to export more refined wood products such as sawn timber, parquet, and veneer instead of the roundwood. The objective of the work was to investigate alternative sawing strategies of tropical hardwood species that could increase the profitability of the Mozambique wood industry in general and at sawmill in particular. The subject was approached using a database of virtual logs and together with a sawing simulator. The thesis has two main focus areas: (1) creating the log database with the corresponding algorithms for sawing simulation, and (2) investigations of alternative sawing strategies. The first focus was to build the database of surface-scanned logs and develop the algorithm for the saw simulation. The results are a database of 15 logs models describing the logs outer shape in which 10 jambirre (Millettia stuhlmannii Taub.) and 5 umbila (Pterocarpus angolensis DC.), and the algorithm for the sawing simulation. The algorithm use “brute force” i.e., determines all volume yields of sawn timber from the combination of all settings of log-positioning parameters (offset, skew and rotation) and selects the maximum value of volume yield. From simulation, using three sawing patterns (cant-sawing, through-and-through sawing and square-sawing) combined with two positioning parameters (offset and rotation) it was found that the sawing pattern has great impact on volume yield and that the square-sawing gave higher yield followed by through-and-through sawing pattern. The second focus was on alternative sawing strategies; having in mind that the optimal volume yield is achieved by aid of computerized production systems and that these resources are not yet in use in Mozambique. Hence, the objective was to find the positioning parameters that can be set manually and improve the volume yield. The result have shown that the rotation is the most affecting parameter followed by offset and skew, and that the volume yield can decrease by between 7.7% and 12.5% from the optimal positioning when the logs are manually positioned with the knowledge about the optimal log position. In another study, using crook-up or horns-down positioning as alternative to the optimal positioning, the volume yield decreases by between 10% and 13% from the optimal positioning. By using bucked logs , the optimal volume yield increased by between 8% and 13% in relation to full lengths logs, and the volume yield of bucked logs when using crook up positioning decreases 2% in relation to optimal positioning of full length logs. It is concluded that there is an unexploited value potential in the wood chain which can be reached using alternative positioning and modern measurement techniques and that the grading of wood will facilitate and improve the sawing process.
53

Avaliação do processo Compact CookingTM com o uso de aditivos para a polpação kraft de eucalipto / Evaluation of Compact CookingTM process with additives for kraft pulping of Eucalyptus

Trebbi, Laura Sabbatini 08 October 2015 (has links)
O Brasil ocupa a quarta colocação no ranking mundial de produção de celulose, sendo que quase 90% da matéria prima é madeira de fibra curta, especificamente do gênero Eucalyptus. O processo de produção de celulose mais utilizado pela grande maioria das indústrias do mundo todo é o químico e, entre os processos químicos modificados está o Compact CookingTM, que é reconhecido por gerar polpas de alta resistência físico-mecânica e boa branqueabilidade. Aditivos de cozimento são amplamente utilizados no processo de fabricação da celulose, pois permitem melhores rendimento e qualidade do produto obtido. O presente trabalho teve como objetivo avaliar a eficiência de quatro aditivos na polpação kraft de eucalipto através do processo Compact CookingTM, buscando melhorias no rendimento do processo e ganho na qualidade da polpa produzida. Os cozimentos foram conduzidos em digestor laboratorial da marca TSI com bomba dosadora acoplada. O tempo total de cozimento foi de 457 minutos, com temperatura máxima de 165º C, resultando em um perfil de cozimento com fator H de 2100. Os aditivos testados foram antraquinona, aditivo 2, aditivo 3 e xilenossulfonato de sódio. A antraquinona e os aditivos 2 e 3 foram aplicados em carga de 0,05% (base madeira) e o xilenossulfonato de sódio foi testado em três cargas: 2, 4 e 8 kg.ton-1 (base madeira). Os resultados obtidos mostraram que o uso do xilenossulfonato de sódio como aditivo na polpação kraft, levando em consideração as especificidades desta pesquisa, não gerou benefícios ao processo e, por isso, o mesmo não foi utilizado nos passos seguintes deste estudo. A antraquinona possibilitou a redução de um ponto percentual de álcali ativo aplicado e consequente ganho de rendimento de 1,6% em relação ao tratamento sem aditivo. Tanto para o aditivo 2 quanto para o aditivo 3 foi possível alcançar o mesmo grau de deslignificação (número kappa 17 ± 05) com redução de cinco pontos percentuais de álcali ativo aplicado em relação ao tratamento testemunha, gerando ganho de 2,3 e 2,4% em rendimento. A viscosidade das polpas com a antraquinona e com os aditivos 2 e 3 também aumentou de maneira significativa se comparada à polpa sem aditivo, sendo os melhores resultados alcançados nos tratamentos com os aditivos 2 e 3; tais aditivos também possibilitaram a maior queda nos valores de consumo específico de madeira e teor de sólidos gerados. Quando testadas em relação a propriedades físico-mecânicas, as polpas produzidas com a utilização dos aditivos 2 e 3 apresentaram as melhores performances, com benefícios na tração, estouro e resistência à passagem de ar. É possível concluir que, para a madeira e processo de polpação utilizados neste trabalho, os aditivos 2 e 3 se mostraram bastante superiores à antraquinona. Assim, fica a sugestão para que mais trabalhos e estudos sejam desenvolvidos com estes produtos, buscando o melhor conhecimento dos mesmos e a comprovação de tal desempenho para a produção de polpa celulósica. / Brazil occupies the fourth place in global pulp production ranking and almost 90% of the raw material used for the national production is hardwood, specifically Eucalyptus. The most used process for pulp production by industries worldwide is the chemical pulping and among the modified chemical processes, there is Compact CookingTM. This one is recognized for producing pulps with high resistance and good bleachability. Additives are widely used in the pulp production process, as they allow better yield and quality of the final product. This study aimed at evaluating the effectiveness of four additives in Eucalyptus kraft pulping, by using Compact CookingTM process, seeking for improvements in process yield and in the pulp quality. The pulp simulation was conducted in laboratory digester that had a pump coupled in it. The total cooking time was 457 minutes, with maximum temperature of 165º C, resulting in a cooking profile with H factor value equal to 2100. The additives used were anthraquinone, additive 2, additive 3 and sodium xylenesulphonate. The anthraquinone and additives 2 and 3 were applied in 0.05% wood base and sodium xylenesulphonate was tested in three loads: 2, 4 and 8 kg.ton-1 (wood base). The results showed that the use of sodium xylenesulphonate as an additive in kraft pulping, considering the specific case of this research, didn\'t generated benefits in the process and, because of this, it was eliminated from the next steps of this research project. Anthraquinone allowed the reduction of 1% in alkali applied and consequent 1.6% yield gain compared to treatment without additive. For both additives 2 and 3, it was possible to achieve the same delignification level (kappa number 17 ± 0.5) by reducing 5% of alkali applied in comparison to the control treatment and this allowed yield gain of 2.3 and 2.4%. The viscosity of the pulp produced by using anthraquinone and additives 2 and 3 increased significantly compared to the pulp without the chemicals, and better results were achieved for treatments with additives 2 and 3; with these additives the pulping process reached the lowest values on wood specific consumption and generated solids. When tested for the physical and mechanical properties, the pulps produced with additives 2 and 3 showed better performances, with benefits in tensile index, burst index and resistance to air flow. Therefore, it was possible to conclude that, for the wood and the pulping process used in this study, additives 2 and 3 showed better results than anthraquinone. The suggestion is that more studies must be developed with these two chemical products, with the objective of reaffirming such good performance in the pulp production.
54

Investigation of yeast Grown in SSF Dring Biothanol Production from Lignocellusosic Material

Babapour, Ayda Barid, Gavitar, Maryam Nadalipour January 2012 (has links)
Ethanol produced from lignocellulosic biomass has the potential to become a promisingalternative to gasoline. In this work the simultaneous saccharification and fermentation (SSF)technology was applied for ethanol production from hardwood with focus on cell growth,ethanol production and contamination.The SSF was performed at PH 5.5 and 35°C for different suspended solid concentrations(8%, 10% and 12%) of pretreated birch slurry which contained 16 % total suspended solids.Two different hexose fermenting yeast strain (Ethanol Red) and pentose fermenting yeaststrain were used.Quantifying the concentration of chemical components and metabolites in the fermentationmedium demonstrated that glucose and xylose are the major fermentable sugars in the slurry.The higher load of slurry (12%) represents a higher content of carbohydrates and potentiallyhigher end concentration of ethanol. Moreover, more lactic acid is produced with the lowerload of slurry (8 % or 10 %), presumably due to a result of a less inhibitory environment forbacterial growth. In this context, acetic acid sticks out as the most important inhibitor withconcentrations of 15.2 and 12.5 and 9.7 g/l respectively in the 12 %, 10 % and 8 % (ofsuspended solids) trials. Using pentose fermenting yeast may lead to higher ethanolproduction, lower xylose uptake and lower lactic acid formation. Cell viability and cellvitality determination from fermentation media in all the trails represented a sharplydecreasing trend during the fermentation for both Ethanol Red yeast strain and the pentosefermenting strain yeast strain apparently due to cell decomposition. / Program: MSc in Resource Recovery - Industrial Biotechnology
55

Avaliação das madeiras de Corymbia citriodora, Corymbia torelliana e seus híbridos visando à produção de celulose kraft branqueada / Evaluation of the woods of Corymbia citriodora, Corymbia torelliana and their hybrids for bleached kraft pulp production

Segura, Tiago Edson Simkunas 23 October 2015 (has links)
O presente trabalho teve como objetivo avaliar a utilização das madeiras de Corymbia citriodora, Corymbia torelliana e seus híbridos para a produção de celulose kraft branqueada. Para isso, as madeiras destas espécies e híbridos foram caracterizadas tecnologicamente e submetidas ao processo kraft de polpação e branqueamento, sendo comparadas à madeira de E. grandis x E. urophylla, utilizada como referência tecnológica. Ao todo, foram avaliadas sete diferentes materiais genéticos do gênero Corymbia: dois materiais de C. citriodora, com 8 e 18 anos de idade, um material de C. torelliana, com 15 anos, e quatro híbridos destas espécies, com 7 anos de idade. A madeira de E. grandis x E. urophylla apresentava 6 anos de idade. Inicialmente, as madeiras das diferentes espécies e híbridos foram caracterizadas sendo, em seguida, submetidas a um processo modificado de polpação kraft. As polpas foram deslignificadas com oxigênio e branqueadas através da sequência DA Ep D1 P visando alvura final de 89,5 ± 0,5% ISO, e tiveram suas características físico-mecânicas determinadas. O impacto das diferentes madeiras no dimensionamento de uma fábrica de celulose também foi avaliado. Os resultados mostram que as madeiras do gênero Corymbia apresentam alta densidade básica e baixo teor de lignina, além de fibras com maior comprimento, menor largura, menor diâmetro do lume, maior espessura de parede e maior fração parede em relação à madeira de E. grandis x E. urophylla. Os processos de polpação de C. citriodora (madeira de 8 anos) e E. grandis x E. urophylla demandam menor carga alcalina e fator H, resultando nos maiores rendimentos, sendo que os menores consumos específicos de madeira foram observados para as madeiras de C. citriodora. A deslignificação com oxigênio é mais eficiente para as polpas do gênero Corymbia em comparação à polpa de E. grandis x E. urophylla. No branqueamento, as polpas C. citriodora (madeira de 8 anos) e E. grandis x E. urophylla são as que demandam menor aplicação de reagentes químicos para atingir determinada alvura. Em comparação às polpas das demais espécies e híbridos avaliadas, as polpas branqueadas da espécie C. citriodora apresentam alto volume específico, baixa resistência à passagem do ar, alta capilaridade, baixo índice de retenção de água e alta resistência ao rasgo, características que recomendam a utilização da polpa desta espécie para a produção de papéis de alta absorção (tissue). Já as polpas de C. torelliana x C. citriodora apresentam baixo volume específico, alta resistência à passagem do ar e baixa capilaridade, enquanto as polpas de E. grandis x E. urophylla e de um dos materiais de C. citriodora x C. torelliana se destacam por apresentar as maiores resistências à tração, rasgo e estouro. No dimensionamento de uma fábrica de celulose, as madeiras dos híbridos de C. citriodora e C. torelliana que apresentam a espécie C. torelliana como genitor feminino (C. citriodora x C. torelliana) demandam maior atenção, principalmente nas áreas da caldeira de recuperação e caustificação, uma vez que apresentam alta demanda de álcali e alta geração de sólidos em comparação aos demais materiais genéticos. / The present work aimed to evaluate the use of the woods of Corymbia citriodora, Corymbia torelliana and their hybrids on bleached kraft pulp production. Woods from these species and hybrids were technologically characterized and submitted to kraft pulping process and bleaching. These woods were compared to E. grandis x E. urophylla, which was used as technological reference. Seven different genetic materials from Corymbia were analyzed: two materials of C. citriodora, with 8 and 18 years-old, one material of C. torelliana, with 15 years-old, and four hybrids of these species, with 7 years-old. The wood of de E. grandis x E. urophylla had 6 years-old. Initially, the different woods were technologically characterized and then submitted to a modified kraft pulping process. The pulps were delignified with oxygen and bleached through a DA Ep D1 P bleaching sequence until 89,5 ± 0,5% ISO of brightness. The bleached pulps had their physical-mechanical characteristics evaluated. The impact of these different woods in a pulp mill dimensioning was also evaluated. The results show that the woods of Corymbia genus present high basic density, low lignin content and fibers with higher length, lower width, lower lumen width, higher wall thickness and higher wall fraction if compared to E. grandis x E. urophylla. The pulping of C. citriodora and E. grandis x E. urophylla demands lower alkali charge and H factor, resulting in higher yields, while the lowest wood specific consumption was observed to C. citriodora\'s woods. The oxygen delignification is more efficient for Corymbia\'s pulps than for E. grandis x E. urophylla. On bleaching, the pulps of C. citriodora (wood with 8 years-old) and E. grandis x E. urophylla are those that demand the lowest chemical reagents charges to achieve the determined brightness. The bleached pulps of C. citriodora present high specific volume, low air passage resistance, high capillarity, low water retention value and high tear index. Based on these characteristics it is possible to recommend this species to tissue papers production. The pulps of C. torelliana x C. citriodora present low specific volume, high air passage resistance and low capillarity, while the pulp of E. grandis x E. urophylla and one of the hybrids of C. citriodora x C. torelliana stands out for presenting the higher tensile, tear and burst indexes. In a pulp mill dimensioning, the woods of C. torelliana x C. citriodora demands higher attention, mainly on recovery boiler and causticizing, for presenting high alkali demand and high solids generation in comparison to the other genetic materials.
56

Using Basic Quality Tools to Improve Production Yields and Product Quality in Manufacturing

Black, Steve E 01 December 2015 (has links)
As the U.S. and world economies emerge from years of recession, the hardwood flooring market is currently enjoying strong growth. With this growth come new challenges for hardwood flooring manufacturers. Strong competition from foreign markets and rising log prices are reducing product margins and forcing companies to think lean, while improving product quality. QEP Wood Flooring division, who struggled through the worst of the U.S. economic down turn is now regaining ground as a strong competitor in the hardwood flooring market. This turnaround is due to internal changes to decrease waste and increase product quality. This is accomplished by using the quality control department as a tool to aid manufacturing. To accomplish these changes, QEP implemented the use of quality tools and employee awareness training; as a result QEP increased overall product quality and yields while reducing customer claim pay outs.
57

Light availability and the establishment of invasive Ligustrum sinense Lour. (Chinese privet) in south Louisiana

January 2013 (has links)
acase@tulane.edu
58

Modelling of Solar Kilns and The Development of An Optimised Schedule for Drying Hardwood Timber

Haque, M. Nawshadul January 2002 (has links)
This research examines the drying of hardwood timber with particular reference to seasoning blackbutt (Eucalyptus pilularis) in a solar kiln. The aims of this research were to develop an optimised drying schedule for drying blackbutt and to develop and validate a mathematical model for a solar kiln. In the first stage of this study, the cross-grain physical and mechanical properties were determined for blackbutt timber so that an optimised schedule (based on drying within a limiting strain envelope) can be developed using model predictive control techniques for drying 43 mm thick (green) blackbutt timber boards in solar kilns. This optimised schedule has been developed and tested in the laboratory. The drying time was 10% shorter for this schedule than the original schedule, compared with an expected reduction in drying time of 14% (relative to the original schedule). Overall the quality was slightly better and the drying time was shorter for the optimised schedule compared with the original schedule. A complete solar kiln model has been developed and validated based on comparisons between the predicted and the measured internal air temperatures, relative humidities and timber moisture contents. The maximum difference between the actual and predicted moisture contents was 0.05 kg/kg. The agreement between the predicted and measured temperatures of the internal air is reasonable, and both the predictions and measurements have a similar cyclical pattern. The generally good agreement between the model prediction of the final moisture content and its measurement may be due to the careful measurement of the boundary conditions such as the solar energy input. The key uncertainties were identified as the heat exchanger output, the measurement of the initial moisture content, the amount of accumulation of condensate on the floor, and the estimation of sky temperature. The significant uncertainty (18%) in the estimation of the initial moisture content is a key reason for the mismatch between the model prediction and the measurements. In terms of operating variables, the energy release rate from the heat exchanger had the greatest effect on the simulated performance, followed by the water spray and venting rates. The simulation suggested that a material with a lower transmissivity to thermal radiation may effectively lower radiation losses, improving the kiln performance, so such materials for glazing is a high priority.
59

Carbohydrate degradation and dissolution during Kraft cooking : Modelling of kinetic results

Johansson, Dan January 2008 (has links)
<p>Chemical pulp fibres from wood are commonly used in products associated with packaging as well as with printing and writing. The prevalent way of liberating fibres is by subjecting wood chips to Kraft cooking. This process has a history of almost 130 years and should be both well described and well established. However, new products and new applications that use fibres as an important renewable resource make it all the more important that the properties of fibres be controllable. The properties of wood fibres are influenced by their carbohydrate composition which, in turn, is dependent on the cooking conditions used. This thesis studies the degradation and dissolution of the different carbohydrates during Kraft cooking and summarizes the results in kinetic expressions.</p><p>Industrial wood chips from Norway spruce (Picea abies) were cooked at a high liquor-to-wood ratio in an autoclave digester at varying concentrations of hydroxide ions, hydrogen sulphide ions and sodium ions as well as varying temperatures. The pulps were analysed for carbohydrate composition, kappa number, content of hexenuronic acid and the pure cellulose viscosity, i.e. only the cellulose content in the pulp sample was used for calculating the viscosity. Kraft cooking of Eucalyptus urophylla and Eucalyptus grandis was also studied, using industrial liquor-to-wood ratios, to examine the relationship between hexenuronic acids and the amount of xylan in the pulp samples.</p><p>For Kraft cooking of Norway spruce it was found that an increase in the concentration of hydroxide ions increased the rate of dissolution of the carbohydrates and the degradation of the cellulose degree of polymerization (DP). However, measured at a kappa number of 30, it is seen that a low hydroxide ion concentration can lower the carbohydrate yield and the pure cellulose viscosity dramatically. The hydroxide ion concentration not only affects the rate of dissolution but also the amount of xylan that reacts in the slower, final phase. Both cellulose and hemicelluloses were found to be affected by the hydrogen sulphide ion concentration. The dissolution of cellulose and hemicelluloses at varying sodium ion concentrations was found to be affected in different directions. The effect of sodium ion concentration on the DP was found to be dependent on the method of evaluation. The pulp viscosity was found to be affected twice as much by the sodium ion concentration than the pure cellulose viscosity was. For Kraft cooking of hardwood it was found that a high xylan yield not always is synonymous with a high hexenuronic acids content.</p>
60

Evaluating Ecological Restoration in Tennessee Hardwood Bottomland Forests

Summers, Elizabeth Anne 01 August 2010 (has links)
Hardwood bottomland ecosystems provide critical habitat for various wildlife among numerous ecosystem services. Since the 1800s, these forested wetlands have been logged and drained for agriculture. The federal government passed a series of legislative acts that protected wetlands and provided monetary support for restoration. The Wetlands Reserve Program (WRP) was established in 1990 with the goal of restoring ecological function in wetlands. Although several studies have measured plant and wildlife responses to WRP restorations, no standard protocol has been developed to monitor the state of ecological restoration at sites. Index of biotic integrity (IBI) models are commonly used to evaluate ecological function by assigning scores derived from biological characteristics measured at disturbed sites and comparing them with reference sites. Therefore, the objectives of my study were to: (1) characterize vegetation, amphibian and bird communities among 17 WRP restoration and 4 reference bottomland sites, and (2) develop IBI models for these communities to use in monitoring ecological restoration. My study was conducted across 10 counties in western Tennessee from March – August 2008, and communities were measured using standard sampling techniques. I detected 15 amphibian and 95 bird species at bottomland WRP sites, which ranged 2 – 21 years old. Anurans were common among sites, but salamanders were only detected at reference sites containing mature forests. The bird community changed predictably in response to succession, with grassland birds dominating young restoration sites and scrub-shrub and forest birds dominating older restoration and reference sites. Vegetation structure was related to site age, and a good predictor of bird community composition. Variables retained in the vegetation IBI model included density of snags, logs and overstory trees, basal area, and percent vertical cover measured using a profile board. The bird IBI model contained relative abundance of bark feeding, branch nesting, and twig nesting guilds. Presence of salamanders was the only variable in the amphibian IBI model. My results indicate that the WRP is contributing to the regional biodiversity of western Tennessee. The IBI models that I developed can be used for monitoring ecological restoration in Tennessee hardwood bottomlands; however, their applicability outside this region should be validated.

Page generated in 0.1024 seconds