• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 150
  • 41
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Base cation immobilization in the stem of some hardwoods of southern Québec

Boucher, Patricia. January 1999 (has links)
The objective of this study was to investigate K, Ca, and Mg immobilization in the stem of species typical of the hardwood forest of southern Quebec. The species examined included American basswood, sugar maple, and white ash from a rich site, and American beech, red oak, and red maple from a poor site. Firstly, rates of immobilization were evaluated over a time span of 40 years. Higher rates of immobilization in the wood only were generally observed on the rich site. Sugar maple immobilized Ca at an elevated rate during 1978--1997, in comparison to the other species on site. In the case of Ca for white ash, and Ca and Mg for red oak, a low wood element concentration and a high rate of growth was associated with a low rate of immobilization. Mean annual immobilization rates on a whole stem basis were also determined for the life of the tree. These results suggest that American basswood and red oak immobilize significant amounts of Mg and Ca in their bark, respectively. / In a second study, concentrations of K, Ca, and Mg across the radial section of the stem (heartwood, transitional, sapwood, and bark) were determined. In a majority of cases, the bark was highest in concentration of base cations. Whereas, for the woody portion of the stem, concentrations were generally highest in the heartwood.
102

Synchrony with host leaf emergence as a component of population dynamics in lepidopteran folivores

Hunter, Alison F. (Alison Fiona) January 1991 (has links)
The connection between variable synchrony of insect eclosion with host budburst and variability in insect densities was investigated. Experiments with gypsy moth (Lymantria dispar L.) larvae determined the duration of acceptable foliage after budbreak of nine hardwood species. Four competing conceptual models of environmental influences on the timing of budburst were compared and evaluated. The best budburst model was combined with an eclosion model to estimate the frequency of asynchrony and its correlation with density. Synchrony with budburst has a smaller effect than weather after hatch, on the population size of the gypsy moth, but neither is the driving force behind density changes. However, comparison of traits of 300 species of Macrolepidoptera showed that 50% of outbreak species, but only 24% of nonoutbreak species begin feeding at the time of budburst; this suggests a stronger relation between synchrony and population dynamics than was found with the gypsy moth.
103

Conversion of hardwoods to ethanol: design and economics of delignification and enzyme recycling

Paruchuri, Divya 25 August 2008 (has links)
The objective of this study was to investigate the possibility of recycling enzymes during saccharification of cellulose for the production of ethanol from woodchips. To make enzyme recycling feasible and economical when woodchips are processed for ethanol, the lignin in the wood is to be removed before the enzymes are added. Since enzymes constitute a major part of the input costs, second only to the feedstock, the ability to reuse the enzymes could lead to a considerable decrease in the production cost of ethanol. Tulip poplar woodchips were selected as the feedstock. Different delignification methods with recovery of byproducts were investigated. Alkali extraction, using dilute NaOH for the removal of lignin after steam pretreatment, was used as the base case against which all other processes were compared. Recovery of furfural and methanol, produced during the pretreatment of the woodchips, for sale as byproducts was one modification to the alkali extraction process that was investigated. The conversion of xylose to furfural and the recovery of the furfural as a byproduct was the third case explored. Solvent extraction using a 50:50 ethanol-water mixture instead of extraction with NaOH was the fourth case examined. Process flow sheets were then developed to recycle the enzymes during the hydrolysis and fermentation of this prehyrolyzed and delignified wood. Two reactor setup schemes were examined for enzyme recycling. One scheme involved a single train of reactors, with the whole pretreated slurry flowing from one reactor to the next, whereas, in the other scheme, the slurry was split among parallel trains of reactors. The activity loss of the enzymes was modeled such that a part of the enzymes entering the reactor lost all their activity. The loss of activity in multiple steps, with enzymes losing only some of their activity, was also modeled. Here the enzymes entering the reactor constituted a mixture with different activities instead of all the enzymes having the same activity like in the previous single step model. Recovering methanol and furfural reduced the minimum ethanol selling price. High temperature ethanol water pretreatment and lignin extraction reduced the minimum ethanol selling price compared to the base case of steam pretreatment followed by alkali extraction. Enzyme recycling also reduces the minimum ethanol selling price. The magnitude of the price reduction depends on the recycling scheme selected and the rate of enzyme deactivation, which has not been measured.
104

The organisation of timber production in the hardwood forests of Western Australia

Hartley, Arthur E Unknown Date (has links)
Chapter 1. The hardwood forests of Western Australia -- 2. Sustained yield management and its influence upon timber production -- The influence of technical developments upon sawmilling operations -- Labour organisation and sawmilling practice -- The rationalisation of the production of timber -- Future prospects for Western Australian hardwoods
105

Enzymatic hydrolysis with commercial enzymes of a xylan extracted from hardwood pulp [electronic resource] /

Marais, Susann. January 2008 (has links)
Thesis (M.Eng.(Chemical Engineering))--University of Pretoria, 2008. / Includes bibliographical references.
106

A stand level growth and yield model for red oak/sweetgum forests in Southern bottomlands

Iles, John Clinton, January 2008 (has links)
Thesis (M.S.)--Mississippi State University. Department of Forestry. / Title from title screen. Includes bibliographical references.
107

Evaluation of willow oak acorn production and the effects of midstory control and flooding on underplanted willow oak seedlings in two Arkansas greentree reservoirs

Thornton, Rory Owen, January 2009 (has links)
Thesis (M.S.)--Mississippi State University. Department of Forestry. / Title from title screen. Includes bibliographical references.
108

Ecology and invasive potential of Paulownia tomentosa (Scrophulariaceae) in a hardwood forest landscape

Longbrake, A. Christina W. January 2001 (has links)
Thesis (Ph.D.)--Ohio University, August, 2001. / Title from PDF t.p.
109

Classifying the Fire Regime Condition Class for Upland Oak-Hickory Forests

Tikusis, Paul David 01 August 2009 (has links)
Several reports of widespread establishment of mesophytic vegetation within oak-hickory upland forests have been documented throughout the Central Hardwoods Region. Previous studies suggest deviations from historic disturbance regimes may be a primary driver of vegetation change, necessitating the use of Fire Regime Condition Class (FRCC) guidelines to measure changes in forest structure. Current parameters of forest structure and fuel loading were assessed within mature oak-hickory uplands throughout the ecological subsections of the Shawnee National Forest, including the Greater Shawnee Hills, Lesser Shawnee Hills, Cretaceous Hills, and the Illinois Ozarks. Present species importance values and forest structure were compared with reference conditions developed from General Land Office records(Fralish et al. 2002). Current uplands contained an average 214.72 ± 16.52 SE trees/ac and 103.37 ± 2.16 SE ft2 BA/ac, while reference stands harbored less than 90 trees/ac with a range of 16 and 120 ft2 BA/ac. Due to the high levels of fragmentation and a lack of large contiguous upland stands within the Shawnee National Forest, stand level criteria for FRCC values were developed as opposed to landscape level FRCC values which are commonly used. FRCC values determined during initial surveys were compared with plot level ratios of forest structure parameters regarding oaks:mesophytes and xerophytes:mesophytes, yielding clear relationships between species composition and FRCC values. Fuel loading (tons/ac) was assessed as a determinant of FRCC values, however a significant relationship between FRCC values and fuel loading was not discovered. Since widespread deviations from the historic fire regime have taken place since the early 20th century, Fire Regime Condition Class values were found to fall into the FRCC 2 and 3 categories without any stands representing FRCC 1. This determination requires future management practices to follow Fire Regime Condition Class guidelines. The study proved that mesophytic species have become established within all canopy strata, with a strong probability of gaining future dominance without active forest management. Although it is clear that forest structure has deviated from reference conditions, a strong oak-hickory overstory component found throughout the study area provides a potential resource to sustain future oak-hickory upland ecosystems.
110

AN ASSESSMENT OF PRESCRIBED BURNING ON SOIL EROSION POTENTIAL IN THE MIXED HARDWOOD FORESTS OF THE OZARK HILLS IN SOUTHERN ILLINOIS

Monroe, Kyle 01 August 2018 (has links)
Prescribed fire has become a management tool utilized to restore or maintain the ecology of the mixed hardwoods ecosystem in the Ozark hills of southwestern Illinois. One effect of prescribed burning is consumption of fuel beds, including the litter layer that protects soil from erosion. Amount of sediment loss after prescribed burning in the steep topography of the Ozark hills is unknown. Erosion after prescribed burning could lead to increased soil loss and possibly stream sedimentation (Bladon etal., 2014). The objective of this research was to quantify the amount of sediment transport occurring on a watershed scale. Sediment yields were measured from five paired watersheds located in Trail of Tears State Forest in Union County, IL, USA from April 2009 into 2010. This location was selected because of the highly erodible loess soils and steeps slopes which present the highest probability of sediment transport following a prescribed burn treatment. One of the paired watersheds was randomly assigned as the control and the other assigned as the treatment. The treatment was a prescribed burn applied at standard burn prescription levels. Sediment loads were determined by collecting samples from a known volume of overland flow held in storage tanks below each watershed after rain events which produced runoff. The prescribed burn treatment significantly reduced the litter depth with 12.6%–31.5% litter remaining in the prescribed burn treatment watersheds. When data were combined across all watersheds, no significant differences were obtained between burn treatment and control watershed for total suspended solids and sediment concentrations or loads. The annual sediment losses varied between 1.41 to 90.54 kg·ha-1·year-1 in the four prescribed burn watersheds and 0.81 to 2.54 kg·ha-1·year-1 in the four control watersheds. Prescribed burn watershed 7 showed an average depth of soil loss of 4.2 mm, whereas control watershed 8 showed an average accumulation of sediments (9.9 mm), possibly due to steeper slopes. Prescribed burning did not cause a significant increase in soil erosion and sediment loss and can be considered acceptable in managing mixed hardwood forests of Ozark uplands and the Shawnee Hills physiographic regions of southern Illinois.

Page generated in 0.0413 seconds