• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • Tagged with
  • 25
  • 25
  • 25
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing the Performance of Two Stormwater Management Ponds in Waterloo, Ontario

Mulroy, Kathleen January 2010 (has links)
Stormwater (SW) runoff in urban areas represents a major pathway for pollutant transfer to receiving waters. Best management practices (BMP) were introduced in the 1970s to help mitigate the negative effects of SW. In the 1990s, Stormwater management (SWM) ponds were established as a BMP to help increase the water quality of SW effluent. Many SWM ponds do not provide sufficient water quality treatment. Information on the internal processes influencing the reduction of total phosphorus (TP), soluble reactive phosphorus (SRP) and total suspended solid (TSS) concentrations in SWM ponds with different designs is lacking. Knowledge of the processes affecting TP, SRP and TSS retention can help improve the design of SWM ponds to enhance their treatment performance. The purpose of this thesis is to provide an assessment of the internal chemical processes that affect the trap efficiency (TE) and spatial and temporal variability of TP, SRP and TSS concentrations at two structurally different SWM ponds (Pond 45; conventional and Pond 33; hybrid extended detention) in Waterloo, ON. Water samples were collected at the inflow and outflow at the two SWM ponds during six storm events and 30 baseflow periods. A mass balance approach was used to quantify the TE of TP, SRP and TSS concentrations at each pond. Pond 33 had a TE of 24.3%, 26.7% and 66.8% for baseflow and stormflow samples of TP, SRP and TSS. Pond 45 performed much better with TE of 93.8%, 94.2% and 98% for TP, SRP and TSS concentrations. Pond 33 was a source of TP, SRP and TSS for 3, 4 and 2 storm events sampled during the field season, respectively. Pond 45 was a sink for all parameters on all storm events samples. The spatial and temporal variability of TP, SRP and TSS concentrations were examined to improve knowledge of external factors and internal processes that influence the TE of SWM ponds. The effects of storm magnitude, seasonality and vegetation growth and senescence on effluent water quality were investigated. Additionally, the role of sediment on P cycling in the ponds was evaluated by determining grain size distribution, porewater SRP concentrations, sediment geochemistry and mineralogy, and the sediment P buffering capacity. Vegetation senescence, anoxic conditions, porewater SRP concentrations, sediment characteristics and buffering capacity influenced the poor TE at Pond 33. Pond 45 had more favourable water column conditions, i.e. higher dissolved oxygen concentrations, therefore allowed greater amounts of P to adsorb onto sediment. Design and maintenance considerations are described to help improve the performance at Pond 33. Continual water quality monitoring of SW effluent will identify changes in quality and mitigation measures can be implemented to increase a SWM ponds performance.
2

Assessing the Performance of Two Stormwater Management Ponds in Waterloo, Ontario

Mulroy, Kathleen January 2010 (has links)
Stormwater (SW) runoff in urban areas represents a major pathway for pollutant transfer to receiving waters. Best management practices (BMP) were introduced in the 1970s to help mitigate the negative effects of SW. In the 1990s, Stormwater management (SWM) ponds were established as a BMP to help increase the water quality of SW effluent. Many SWM ponds do not provide sufficient water quality treatment. Information on the internal processes influencing the reduction of total phosphorus (TP), soluble reactive phosphorus (SRP) and total suspended solid (TSS) concentrations in SWM ponds with different designs is lacking. Knowledge of the processes affecting TP, SRP and TSS retention can help improve the design of SWM ponds to enhance their treatment performance. The purpose of this thesis is to provide an assessment of the internal chemical processes that affect the trap efficiency (TE) and spatial and temporal variability of TP, SRP and TSS concentrations at two structurally different SWM ponds (Pond 45; conventional and Pond 33; hybrid extended detention) in Waterloo, ON. Water samples were collected at the inflow and outflow at the two SWM ponds during six storm events and 30 baseflow periods. A mass balance approach was used to quantify the TE of TP, SRP and TSS concentrations at each pond. Pond 33 had a TE of 24.3%, 26.7% and 66.8% for baseflow and stormflow samples of TP, SRP and TSS. Pond 45 performed much better with TE of 93.8%, 94.2% and 98% for TP, SRP and TSS concentrations. Pond 33 was a source of TP, SRP and TSS for 3, 4 and 2 storm events sampled during the field season, respectively. Pond 45 was a sink for all parameters on all storm events samples. The spatial and temporal variability of TP, SRP and TSS concentrations were examined to improve knowledge of external factors and internal processes that influence the TE of SWM ponds. The effects of storm magnitude, seasonality and vegetation growth and senescence on effluent water quality were investigated. Additionally, the role of sediment on P cycling in the ponds was evaluated by determining grain size distribution, porewater SRP concentrations, sediment geochemistry and mineralogy, and the sediment P buffering capacity. Vegetation senescence, anoxic conditions, porewater SRP concentrations, sediment characteristics and buffering capacity influenced the poor TE at Pond 33. Pond 45 had more favourable water column conditions, i.e. higher dissolved oxygen concentrations, therefore allowed greater amounts of P to adsorb onto sediment. Design and maintenance considerations are described to help improve the performance at Pond 33. Continual water quality monitoring of SW effluent will identify changes in quality and mitigation measures can be implemented to increase a SWM ponds performance.
3

Modeling Total Suspended Solids in Combined Sewer Systems

Zhang, Weilan 01 May 2012 (has links)
The untreated overflow of combined sewer system contains a variety of pollutants that can contaminate the receiving water body. Total suspended solids (TSS) transported in the sewer networks can adsorb these pollutants and become the main contaminant source. Existing models contain a numerous formulas that make the calculation process complex and time consuming. A simplified model was presented in this thesis to simulate the process of TSS transport in combined sewer pipes. The combined sewer system evaluated was a combination of an existing sewer system in Le Marais and an example system provided with the Storm Water Management Model (SWMM). SWMM was used in this research to simulate the rainfall event, pollutant build-up and wash-off process, and to provide hydraulic calculations for the combined sewer system. A spreadsheet model was created to calculate the TSS concentration profile and flow velocity profile. The total TSS transport rate was computed using a numerical estimation of the integral of the concentration in the cross-section area multiplied by the velocity. The flow depth, velocity, and Froude number of each pipe was calculated to show that the combined sewer system was under proper working conditions. The first flush phenomenon was observed by plotting the TSS concentration pollutograph of the combined sewer system. From the TSS transport pollutograph, the maximum transport rate was found (0.2609 kg/s at 6:45). The study of TSS profile showed that the concentration distribution was based on the solid density. The TSS particle also affected the transport rate. A sensitivity analysis of particle size was conducted in this thesis. A second order polynomial was used to describe the relationship between median particle size d50¬ ¬and TSS transport rate.
4

Evaluation of compost specifications for stormwater management

Birt, Lindsay Nicole 15 May 2009 (has links)
Urban development will continue to increase in Texas because of population growth and urban sprawl. Despite the desire for urbanization and expansion of the economy, this growth increases the amount of construction, which, if not properly managed, can increase non-point source pollution and threaten surface water quality. Therefore, Texas Department of Transportation (TxDOT) has approved and promoted the use of compost as a stormwater best management practice (BMP) during highway construction. The objectives of this study were to construct and calibrate an indoor rainfall simulator and to determine the effectiveness of using compost rather than conventional hydroseeding or topsoil to reduce erosion from disturbed soils. Runoff rates, interrill erosion, and interrill erodibility were determined and compared across five compost treatments following TxDOT specifications for compost applied as an erosion control and two control treatments of topsoil (TS) and hydroseeding (HS) applied at 5 cm depth. The simulator produced 89% uniformity using ten Veejet 80100 nozzles at a target rate of 100 mm h-1. The surface runoff was collected after 5 minutes of rainfall (first flush) and during the last 30 minutes of rainfall (steady-state). The first flush mean runoff for GUC-5 treatment was significantly higher than all other treatments. All other treatments; 50% woodchips and 50% compost blend (ECC-1.3, ECC-5), and hydroseeding (HS) had significantly lower runoff and erosion rates compared to topsoil (TS) and compost manufactured topsoil (CMT) at first flush and steady-state. Furthermore, there were no performance differences between 1.3 cm and 5 cm compost applications at first flush or steady-state. The results of this project indicate that particle size, soil moisture capabilities, and time at which rainfall is applied affect surface runoff. TxDOT specification of using ECC at 5 cm depth on a max of 3:1 slope should be reconsidered. An ECC application depth of 1.3 cm was effective in reducing first flush runoff and interrill erosion rates.
5

Evaluation of compost specifications for stormwater management

Birt, Lindsay Nicole 15 May 2009 (has links)
Urban development will continue to increase in Texas because of population growth and urban sprawl. Despite the desire for urbanization and expansion of the economy, this growth increases the amount of construction, which, if not properly managed, can increase non-point source pollution and threaten surface water quality. Therefore, Texas Department of Transportation (TxDOT) has approved and promoted the use of compost as a stormwater best management practice (BMP) during highway construction. The objectives of this study were to construct and calibrate an indoor rainfall simulator and to determine the effectiveness of using compost rather than conventional hydroseeding or topsoil to reduce erosion from disturbed soils. Runoff rates, interrill erosion, and interrill erodibility were determined and compared across five compost treatments following TxDOT specifications for compost applied as an erosion control and two control treatments of topsoil (TS) and hydroseeding (HS) applied at 5 cm depth. The simulator produced 89% uniformity using ten Veejet 80100 nozzles at a target rate of 100 mm h-1. The surface runoff was collected after 5 minutes of rainfall (first flush) and during the last 30 minutes of rainfall (steady-state). The first flush mean runoff for GUC-5 treatment was significantly higher than all other treatments. All other treatments; 50% woodchips and 50% compost blend (ECC-1.3, ECC-5), and hydroseeding (HS) had significantly lower runoff and erosion rates compared to topsoil (TS) and compost manufactured topsoil (CMT) at first flush and steady-state. Furthermore, there were no performance differences between 1.3 cm and 5 cm compost applications at first flush or steady-state. The results of this project indicate that particle size, soil moisture capabilities, and time at which rainfall is applied affect surface runoff. TxDOT specification of using ECC at 5 cm depth on a max of 3:1 slope should be reconsidered. An ECC application depth of 1.3 cm was effective in reducing first flush runoff and interrill erosion rates.
6

Agricultural nonpoint source pollution management: Water quality impacts of Balm Road Treatment Marsh, Hillsborough County, Florida

Malone, Sarah J 01 June 2009 (has links)
Balm Road Treatment Marsh is a 12 ha constructed wetland treatment system in south-central Hillsborough County, Florida created to improve water quality in Bullfrog Creek and ultimately Tampa Bay. The treatment system was designed to treat runoff from approximately 741 ha of upstream agricultural land prior to discharging into the creek, with the primary goals of reducing sediment and nutrient loads. Water quality data from four sites on Bullfrog Creek were analyzed to determine impacts to ambient water quality and pollutant load reductions downstream. Results were compared to the performance of other wetlands to treat both nonpoint and point source pollution. Impacts to ambient water quality in the creek were found to be minimal, if any, and although significant load reductions were found downstream, they could not be attributed to wetland treatment affects with confidence. In general, nonpoint source pollution, particularly from agriculture, was found to be treated less effectively than point sources. The importance of monitoring the performance of stormwater projects while employing a strategic sample design and including receiving water impacts is highlighted.
7

The effects of effluent discharge and concentration on streambed infiltration in the Lower Santa Cruz River

Prietto, Jacob January 2014 (has links)
Wastewater generated in the Tucson metropolitan region is conveyed to and treated at the Roger Road Wastewater Reclamation Facility (WRF) and Ina Road WRF. From 2005 to 2012, approximately 15,000 acre-feet per year of effluent was returned to the City of Tucson for additional filtration and reuse in the reclaimed water system. The remaining 48,000+ acre-feet per year of treated effluent was discharged to the Santa Cruz River, where a variable portion of the effluent infiltrates the streambed. The effluent that infiltrates the streambed contributes to recharge credits for participants invested in the Managed Underground Storage Facilities. In the effluent-dependent river, physical, chemical, and biological processes work in combination to develop a clogging layer near the streambed surface, which reduces infiltration. Previous studies have shown that large storm events have the ability to scour away the clogging layer and are the most significant processes contributing to establishing infiltration rates. Without the occurrence of large storm events, other variables such as effluent discharge and effluent concentrations affect infiltration to a lesser degree. Effluent discharge, biochemical oxygen demand, and total suspended solids are monitored and recorded daily at the outfalls of the WRFs. The parameters were investigated individually and in combination using statistical analyses to determine their correlations with streambed infiltration in the Santa Cruz River. The dry spring-early summer seasons from 2005 to 2012 were analyzed. A water balance was constructed for non-stormflow days during each time period. Evapotranspiration was calculated using riparian vegetation surveys and detailed delineations of aerial photography of the surface water and streamside herbaceous vegetation. Infiltration was derived as the residual of the water balance. At the daily time scale, correlations among variables were unobtainable due to the extremely variable characteristics of infiltration. The seasonal time scale analyses demonstrated an inverse relationship between both the effluent concentrations of biochemical oxygen demand and total suspended solids with infiltration and a direct correlation between effluent discharge and infiltration under extreme conditions. Under normal conditions, the distribution of discharge between Roger Road WRF and Ina Road WRF had a critical effect on infiltration as a result of the different deposition and erosive regimes through the Santa Cruz River.
8

Assessment of the Physical and Biological Effects of Mine Related Total Suspended Solids in Arctic Lakes

VanEngen, Ryan 09 May 2012 (has links)
The objective of this thesis was to assess the physical (concentrations, durations, and sedimentation) and biological effects of total suspended solids (TSS) in Arctic lakes following in-lake construction of dikes. TSS concentration and duration estimates were applied in a Severity of Ill Effects model which predicted possible habitat degradation and a reduction of feeding of salmonids with no significant difference between stations (ANOVA, p=0.153). Benthic invertebrates collected inside suspended sediment containment curtains showed a decrease in richness and abundance (Tukey’s, p<0.05), with no effects elsewhere. Stable isotope analysis from lake trout and arctic char muscle tissue suggested no differences in isotopic signatures following TSS exposure, but stable isotope analysis of stomach contents in lake trout had a significant increase in δ15N compared to the reference basin (Tukey’s, p<0.05). These findings suggested that lake trout adapted their food sources under moderate TSS exposure and benthic invertebrates rapidly recovered to pre-disturbance values. / Agnico-Eagle Mines Limited: Meadowbank Division and the University of Guelph; Research approved by Department of Fisheries and Oceans & Nunavut Impact Review Board
9

Modelling Chemically Enhanced Primary Settlers Treating Wastewater using Particle Settling Velocity Distribution : Modellering av kemfällning i försedimentering för avloppsvatten, genom att använda distribuering av sedimentationshastigheter för suspenderadepartiklar.

Lundin, Emma January 2014 (has links)
The urban sprawl creates a gap between producers and consumers and the a sustainable circuitof nutrients and energy is difficult to maintain. Many times the waste that is created in urbanareas is not reused and the circuit is lost. In this project, wastewater treatment is looked atwith the view point that resource recovery is possible through energy production and reuse ofnutrients. In order to optimally run each process step at a wastewater treatment plant forimproved resource recovery, more knowledge is needed in order to not disregard the finaleffluent quality. The goal of this project was to develop a model in MATLAB/Simulink for achemically enhanced primary clarifier at a wastewater treatment plant. The potential ofproducing more biogas and reducing the aeration energy needed in the biological treatmentstep was looked at by focusing on describing the settling velocity of suspended solids.Experimental analysis on settling properties for solids was performed on sampled wastewaterentering the primary settler after changing the addition of chemicals prior in the process line.The wastewater samples were homogenized and then rapidly vacuum pumped up in a column.The solids in the column could thereafter settle and was retained in a cup at the bottom. Themass of total suspended solids (TSS) was classified in five different settling velocity classes,each class assigned a characteristic settling velocity. The experimental procedure followed theViCA's protocol (French acronym for Settling Velocity for Wastewater). A settler, much likethe secondary settler in the Benchmark Simulation Model No. 2 (BSM2), a 10 layer nonreactivetank was modeled. The mass balance in each layer of the settler was decided by thevertical solid flux in the tank and built on the characteristic settling velocity gained from theexperiments. Re-circulation of excess sludge from the subsequent steps at the plant showed toeffect the settling properties of the sludge in the primary settler. The components of TSSshowed to have the largest effect on the distribution of settling velocity. The variation in doseof both coagulant and cationic polymer prior the primary settling tank showed to effect theparticle settling distribution somewhat. A first simulation with an applicable dynamic influentscenario was run. Despite any proper calibration the model gave fairly good predictions ofmeasured TSS in the effluent and sludge outtake water. / När urbana områden växer uppstår svårigheter i att bibehålla ett hållbart kretslopp av energioch näringsämnen. Avståndet mellan producent och konsument ökar och många gångeråteranvänds inte det avfall som städerna producerar och det hållbara kretsloppet bryts. Dettaprojekt har fokuserat på resursåteranvändningen i avloppsvattenhanteringen genommöjligheterna som finns i energiproduktion i form av biogas samt återanvändning avnäringsämnen genom slamåterförsel. Mer kunskap behövs inom varje processteg för attoptimalt använda avloppsreningsverk för förbättrad resurs-återvinning så att inte utgåendevattenkvalitet blir lidande. Målet med projektet var att utveckla en modell iMATLAB/Simulink för primärsedimentering med kemisk fällning. Experimentelltanalyserades sedimentationsegenskaperna hos primärslam genom provtagning avavloppsvatten inkommande till försedimenteringen efter tillsatser av fällnings-kemikalier.Proverna homogeniserades och vakuumpumpades sedan snabbt upp i en kolonn. Detpartikulära materialet i kolonnen kunde därefter sedimentera och fångades upp i en kopp ibotten. Den sedimenterade massan av totalt suspenderat material (TSS) klassificerades i femolika sedimenteringshastighetsklasser och varje klass tilldelades en karakteristisksedimentationshastighet Det experimentella förfarandet följde ViCA’s protokoll (franskförkortning för sedimentationshastigheter för avloppsvatten). En modell av ensedimentationstank, ungefär som för sekundär-sedimenteringen i Benchmark SimulationModel No. 2 (BSM2), utvecklades som en 10 lager icke reaktiv tank. Massbalansen i varjelager bestämdes av det vertikala flödet av partiklar och beräknades med de experimentelltframtagna karakteristiska sedimentationshastigheterna. Återcirkulering av överskottsslam frånde efterföljande reningsstegen visade sig ha stor påverkan på slammetssedimentationsegenskaper i försedimenteringen. Typen av TSS-komponenter hade den störstainverkan på fördelningen av sedimentationshastigheter. Variationen i dos av bådefällningskemikalie och katjonspolymer före primär-sedimenteringstanken hade en visspåverkan på fördelningen. En första simulering med ett sannolikt dynamisk inflödesscenariokördes. Utan någon riktig kalibrering av modellen gav den ändå en relativt realistisk prognospå TSS i utgående vatten och i slamuttaget. / I samarbete med forskningsgruppen ModelEAU, Quebec, Kanada
10

Determining Soil Erosion with Varying Corn Stover Cover Factors

Koeninger, Nicole K 01 January 2015 (has links)
Since the Dust Bowl, conservation agriculture has become a common practice globally. Because of the rising interest in the use of corn biomass as a feedstock for biofuel production, the effects of corn stover removal on soil erosion were explored. It was hypothesized that selective harvesting strategies would impact soil erosion differently across a variety of slopes. Soil erosion boxes were constructed, and a rainfall simulator with an intensity of 30 mm hr-1 for 46 min was used to create runoff from slopes of 1, 5, and 10% and three cover factor treatments (no removal and two simulated corn stover removal strategies). Due to research time constraints, simulated corn roots were constructed to emulate actual corn roots in all experiments. The corn stover harvest strategies change the distribution of cobs, husks, leaves, and stalks in field; these changes were represented as the cover factor treatments. Changing the type of plant material on the soil surface impacted the predicted soil erosion from the Revised Universal Soil Loss Equation (RUSLE). Based on the results from this study, the effect of corn stover cover percentages had a significant impact on the predicted and observed soil loss.

Page generated in 0.0694 seconds