• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Total Suspended Solids in Combined Sewer Systems

Zhang, Weilan 01 May 2012 (has links)
The untreated overflow of combined sewer system contains a variety of pollutants that can contaminate the receiving water body. Total suspended solids (TSS) transported in the sewer networks can adsorb these pollutants and become the main contaminant source. Existing models contain a numerous formulas that make the calculation process complex and time consuming. A simplified model was presented in this thesis to simulate the process of TSS transport in combined sewer pipes. The combined sewer system evaluated was a combination of an existing sewer system in Le Marais and an example system provided with the Storm Water Management Model (SWMM). SWMM was used in this research to simulate the rainfall event, pollutant build-up and wash-off process, and to provide hydraulic calculations for the combined sewer system. A spreadsheet model was created to calculate the TSS concentration profile and flow velocity profile. The total TSS transport rate was computed using a numerical estimation of the integral of the concentration in the cross-section area multiplied by the velocity. The flow depth, velocity, and Froude number of each pipe was calculated to show that the combined sewer system was under proper working conditions. The first flush phenomenon was observed by plotting the TSS concentration pollutograph of the combined sewer system. From the TSS transport pollutograph, the maximum transport rate was found (0.2609 kg/s at 6:45). The study of TSS profile showed that the concentration distribution was based on the solid density. The TSS particle also affected the transport rate. A sensitivity analysis of particle size was conducted in this thesis. A second order polynomial was used to describe the relationship between median particle size d50¬ ¬and TSS transport rate.
2

Sediment transport over a flat bed in a uni-directional flow: simulations and validation.

Heald, J., McEwan, I.K., Tait, Simon J. January 2004 (has links)
No / A discrete particle model is described which simulates bedload transport over a flat bed of a unimodal mixed-sized distribution of particles. Simple physical rules are applied to large numbers of discrete sediment grains moving within a unidirectional flow. The modelling assumptions and main algorithms of the bedload transport model are presented and discussed. Sediment particles are represented by smooth spheres, which move under the drag forces of a simulated fluid flow. Bedload mass-transport rates calculated by the model exhibit a low sensitivity to chosen model parameters. Comparisons of the calculated mass-transport rates with well-established empirical relationships are good, strongly suggesting that the discrete particle model has captured the essential elements of the system physics. This performance provides strong justification for future interrogation of the model to investigate details of the small-scale constituent processes which have hitherto been outside the reach of previous experimental and modelling investigations.
3

Improvement of Signal Analysis for Surrogate Bedload Monitoring at Sediment Bypass Tunnels / 排砂バイパストンネルにおける掃流砂間接計測のための信号解析手法の高度化

Koshiba, Takahiro 23 March 2020 (has links)
付記する学位プログラム名: グローバル生存学大学院連携プログラム / 京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22419号 / 工博第4680号 / 新制||工||1730(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 角 哲也, 准教授 竹門 康弘, 准教授 Sameh Kantoush / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
4

Classical Simulations of the Drift of Magnetobound States of Positronium

Aguirre Farro, Franz 08 1900 (has links)
The production and control of antihydrogen at very low temperatures provided a key tool to test the validity for the antimaterial of the fundamental principles of the interactions of nature such as the weak principle of equivalence (WEP), and CPT symmetry (Charge, Parity, and Time reversal). The work presented in this dissertation studies the collisions of electrons and positrons in strong magnetic fields that generate magnetobound positronium (positron-electron system temporarily bound due to the presence of a magnetic field) and its possible role in the generation of antihydrogen.
5

Caracterización hidrodinámica y fenomenológica de membranas selectivas

García Gamuz, José Antonio 16 October 2009 (has links)
El objetivo principal de este trabajo es desarrollar un modelo sencillo que permita la caracterización hidrodinámica de membranas selectivas integradas en sistemas bi-iónicos, mediante la determinación de coeficientes de difusión y de espesores de las capas límite alrededor de la membrana. A tal fin, se empleó una célula de difusión rotatoria (CDR), que permite el establecimiento de condiciones hidrodinámicas bien definidas para el sistema de membrana, dado que la variación de la frecuencia de giro del cilindro interior (ω), permite disminuir el espesor de la capa límite sobre la membrana, lo que favorece el intercambio iónico a su través. Se puede comprobar éste comportamiento, mediante consideraciones en torno al coeficiente de difusión de los cationes en el sistema de membrana y del cálculo del propio espesor de la capa límite. El mencionado coeficiente se obtendrá a partir del flujo iónico en la membrana, determinado a partir de medidas de pH, junto a medidas de conductividad, en la fase externa (receptora), a diferentes temperaturas y a distintas valores de ω.La medida de los flujos, una vez establecida su dependencia con ω, permite obtener los coeficientes de difusión catiónicos en el sistema de membrana, en función de la temperatura y de ω. Las medidas de la conductividad permiten testar el modelo propuesto, mediante su correlación con los valores de pH obtenidos, proporcionando información adicional acerca de los coeficientes de difusión de los cationes. / From the experimental study of the ionic transport through selective membranes in biionic systems, a simple model which allows the characterising hydrodynamic of the membrane systems through the determination of diffusion coefficients and the thickness of the limit layer has been developed. With this purpose, a rotating diffusion cell that allows the setting of hydrodynamic conditions clearly for the membrane system has been used, studying the variation of the conductivity and the pH in the external phase (receiving) at different temperatures from 20ºC to 50ºC and at different rotating velocities ω. The measurement of the fluxes, once set its dependence with ω, allows obtained the diffusion coefficients cationics in the membrane system in accordance with the temperature and ω. The measurements of the conductivity allow the testing of this model, through its correlation with the values of the pH measured, obtaining additional data about the diffusion coefficient of the cations in the receiving phase.
6

Thermotolerance of cotton

Cottee, Nicola Sandra January 2009 (has links)
Doctor of Philosophy (PhD) / The Australian cotton industry has developed high yielding and high quality fibre production systems and attributes a significant contribution of this achievement to highly innovative breeding programs, specifically focused on the production of premium quality lint for the export market. Breeding programs have recently shifted attention to the development of new germplasm with superior stress tolerance to minimise yield losses attributed to adverse environmental conditions and inputs such as irrigation, fertilisers and pesticides. Various contributors to yield, such as physiology, biochemistry and gene expression have been implemented as screening tools for tolerance to high temperatures under growth cabinet and laboratory conditions but there has been little extension of these mechanisms to field based systems. This study evaluates tools for the identification of specific genotypic thermotolerance under field conditions using a multi-level ‘top down’ approach from crop to gene level. Field experiments were conducted in seasons 1 (2006) and 3 (2007) at Narrabri (Australia) and season 2 (2006) in Texas (The United States of America) and were supplemented by growth cabinet experiments to quantify cultivar differences in yield, physiology, biochemical function and gene expression under high temperatures. Whole plants were subjected to high temperatures in the field through the construction of Solarweave® tents and in the growth cabinet at a temperature of 42 oC. The effectiveness of these methods was then evaluated to establish a rapid and reliable screening tool for genotype specific thermotolerance that could potentially improve the efficiency of breeding programs and aid the development to high yielding cultivars for hot growing regions. Cotton cultivars Sicot 53 and Sicala 45 were evaluated for thermotolerance using crop level measurements (yield and fibre quality) and whole plant measurements (fruit retention) to determine the efficacy of these measurements as screening tools for thermotolerance under field conditions. Sicot 53 was selected as a relatively thermotolerant cultivar whereas Sicala 45 was selected as a cultivar with a lower relative thermotolerance and this assumption was made on the basis of yield in hot and cool environments under the CSIRO Australian cotton breeding program. Yield and fruit retention were lower under tents compared with ambient conditions in all 3 seasons. Yield and fruit retention were highly correlated in season 1 and were higher for Sicot 53 compared to Sicala 45 suggesting that fruit retention is a primary limitation to yield in a hot season. Thus yield and fruit retention are good indicators of thermotolerance in a hot season. Temperature treatment and cultivar differences were determined for fibre quality in seasons 1 and 3; however, quality exceeded the industry minimum thereby indicating that fibre quality is not a good determinant of thermotolerance. Physiological determinants of plant functionality such as photosynthesis, electron transport rate, stomatal conductance and transpiration rate were determined for cultivars Sicot 53 and Sicala 45 under the tents and an index of these parameters was also analysed to determine overall plant physiological capacity in the field. Physiological capacity was also determined under high temperatures in the growth cabinet using a light response curve at various levels of photosynthetically active radiation (PAR). Photosynthesis and electron transport rate decreased, whilst stomatal conductance and transpiration rate increased under the tents as well as under high temperatures in the growth cabinet. Photosynthesis and electron transport rate were higher for Sicot 53 but stomatal conductance and transpiration rate were higher for Sicala 45 under the tents. No cultivar differentiation was evident for plants grown under high temperatures in the growth cabinet. Temperature treatment and cultivar differences in physiological function were greater in a hot year (season 1), thereby indicating the importance of cultivar selection for thermotolerance in the presence of stress. Electron transport rate was correlated with yield in season 1, thus suggesting the suitability of this method for broad genotypic screening for thermotolerance under field conditions. Biochemical processes such as membrane integrity and enzyme viability were used to determine cultivar specific thermotolerance under high temperature stress in the laboratory, field and growth cabinet. Electrolyte leakage is an indicator of decreased membrane integrity and may be estimated by the relative electrical conductivity or relative cellular injury assays. The heat sensitivity of dehydrogenase activity, a proxy for cytochrome functionality and capacity for mitochondrial electron transport, may be quantified spectrophotometrically. Cellular membrane integrity and enzyme viability decreased sigmoidally with exposure to increasing temperatures in a water bath. Membrane integrity was higher for Sicot 53 compared with Sicala 45 under the tents and under high temperatures in the growth cabinet. No temperature treatment or cultivar differences were found for enzyme viability under the tents; however, enzyme viability for Sicala 45 was higher in the growth cabinet compared with Sicot 53. Relative electrical conductivity was strongly correlated with yield under ambient field conditions and under the tents, suggesting impairment of electron flow through photosynthetic and/or respiratory pathways, thus contributing to lower potential for ATP production and energy generation for yield contribution. Thus, the membrane integrity assay was considered to be a rapid and reliable tool for thermotolerance screening in cotton cultivars. Gene expression was examined for cultivars Sicot 53 and Sicala 45 grown under high (42 oC) temperatures in the growth cabinet. Rubisco activase expression was quantified using quantitative real-time polymerase chain reaction analysis and was decreased under high temperatures and was lower for Sicala 45 than Sicot 53. Maximum cultivar differentiation was found after 1.0 h exposure to high temperatures and hence, leaf tissue sampled from this time point was further analysed for global gene profiling using cDNA microarrays. Genes involved in metabolism, heat shock protein generation, electron flow and ATP generation were down-regulated under high temperatures in the growth cabinet and a greater number of genes were differentially expressed for Sicala 45, thereby indicating a higher level of heat stress and a greater requirement for mobilisation of protective and compensatory mechanisms compared with Sicot 53. Cultivar specific thermotolerance determination using gene profiling may be a useful tool for understanding the underlying basis of physiological and biochemical responses to high temperature stress in the growth cabinet. There is future opportunity for profiling genes associated with heat stress and heat tolerance for identification of key genes associated with superior cultivar performance under high temperature stress and characterisation of these genes under field conditions. This research has identified cultivar differences in yield under field conditions and has identified multiple physiological and biochemical pathways that may contribute to these differences. Future characterisation of genes associated with heat stress and heat tolerance under growth cabinet conditions may be extended to field conditions, thus providing the underlying basis of the response of cotton to high temperature stress. Electron transport rate and relative electrical conductivity were found to be rapid and reliable determinants of cultivar specific thermotolerance and hence may be extended to broad-spectrum screening of a range of cotton cultivars and species and under a range of abiotic stress. This will enable the identification of superior cotton cultivars for incorporation into local breeding programs for Australian and American cotton production systems.
7

Thermotolerance of cotton

Cottee, Nicola Sandra January 2009 (has links)
Doctor of Philosophy (PhD) / The Australian cotton industry has developed high yielding and high quality fibre production systems and attributes a significant contribution of this achievement to highly innovative breeding programs, specifically focused on the production of premium quality lint for the export market. Breeding programs have recently shifted attention to the development of new germplasm with superior stress tolerance to minimise yield losses attributed to adverse environmental conditions and inputs such as irrigation, fertilisers and pesticides. Various contributors to yield, such as physiology, biochemistry and gene expression have been implemented as screening tools for tolerance to high temperatures under growth cabinet and laboratory conditions but there has been little extension of these mechanisms to field based systems. This study evaluates tools for the identification of specific genotypic thermotolerance under field conditions using a multi-level ‘top down’ approach from crop to gene level. Field experiments were conducted in seasons 1 (2006) and 3 (2007) at Narrabri (Australia) and season 2 (2006) in Texas (The United States of America) and were supplemented by growth cabinet experiments to quantify cultivar differences in yield, physiology, biochemical function and gene expression under high temperatures. Whole plants were subjected to high temperatures in the field through the construction of Solarweave® tents and in the growth cabinet at a temperature of 42 oC. The effectiveness of these methods was then evaluated to establish a rapid and reliable screening tool for genotype specific thermotolerance that could potentially improve the efficiency of breeding programs and aid the development to high yielding cultivars for hot growing regions. Cotton cultivars Sicot 53 and Sicala 45 were evaluated for thermotolerance using crop level measurements (yield and fibre quality) and whole plant measurements (fruit retention) to determine the efficacy of these measurements as screening tools for thermotolerance under field conditions. Sicot 53 was selected as a relatively thermotolerant cultivar whereas Sicala 45 was selected as a cultivar with a lower relative thermotolerance and this assumption was made on the basis of yield in hot and cool environments under the CSIRO Australian cotton breeding program. Yield and fruit retention were lower under tents compared with ambient conditions in all 3 seasons. Yield and fruit retention were highly correlated in season 1 and were higher for Sicot 53 compared to Sicala 45 suggesting that fruit retention is a primary limitation to yield in a hot season. Thus yield and fruit retention are good indicators of thermotolerance in a hot season. Temperature treatment and cultivar differences were determined for fibre quality in seasons 1 and 3; however, quality exceeded the industry minimum thereby indicating that fibre quality is not a good determinant of thermotolerance. Physiological determinants of plant functionality such as photosynthesis, electron transport rate, stomatal conductance and transpiration rate were determined for cultivars Sicot 53 and Sicala 45 under the tents and an index of these parameters was also analysed to determine overall plant physiological capacity in the field. Physiological capacity was also determined under high temperatures in the growth cabinet using a light response curve at various levels of photosynthetically active radiation (PAR). Photosynthesis and electron transport rate decreased, whilst stomatal conductance and transpiration rate increased under the tents as well as under high temperatures in the growth cabinet. Photosynthesis and electron transport rate were higher for Sicot 53 but stomatal conductance and transpiration rate were higher for Sicala 45 under the tents. No cultivar differentiation was evident for plants grown under high temperatures in the growth cabinet. Temperature treatment and cultivar differences in physiological function were greater in a hot year (season 1), thereby indicating the importance of cultivar selection for thermotolerance in the presence of stress. Electron transport rate was correlated with yield in season 1, thus suggesting the suitability of this method for broad genotypic screening for thermotolerance under field conditions. Biochemical processes such as membrane integrity and enzyme viability were used to determine cultivar specific thermotolerance under high temperature stress in the laboratory, field and growth cabinet. Electrolyte leakage is an indicator of decreased membrane integrity and may be estimated by the relative electrical conductivity or relative cellular injury assays. The heat sensitivity of dehydrogenase activity, a proxy for cytochrome functionality and capacity for mitochondrial electron transport, may be quantified spectrophotometrically. Cellular membrane integrity and enzyme viability decreased sigmoidally with exposure to increasing temperatures in a water bath. Membrane integrity was higher for Sicot 53 compared with Sicala 45 under the tents and under high temperatures in the growth cabinet. No temperature treatment or cultivar differences were found for enzyme viability under the tents; however, enzyme viability for Sicala 45 was higher in the growth cabinet compared with Sicot 53. Relative electrical conductivity was strongly correlated with yield under ambient field conditions and under the tents, suggesting impairment of electron flow through photosynthetic and/or respiratory pathways, thus contributing to lower potential for ATP production and energy generation for yield contribution. Thus, the membrane integrity assay was considered to be a rapid and reliable tool for thermotolerance screening in cotton cultivars. Gene expression was examined for cultivars Sicot 53 and Sicala 45 grown under high (42 oC) temperatures in the growth cabinet. Rubisco activase expression was quantified using quantitative real-time polymerase chain reaction analysis and was decreased under high temperatures and was lower for Sicala 45 than Sicot 53. Maximum cultivar differentiation was found after 1.0 h exposure to high temperatures and hence, leaf tissue sampled from this time point was further analysed for global gene profiling using cDNA microarrays. Genes involved in metabolism, heat shock protein generation, electron flow and ATP generation were down-regulated under high temperatures in the growth cabinet and a greater number of genes were differentially expressed for Sicala 45, thereby indicating a higher level of heat stress and a greater requirement for mobilisation of protective and compensatory mechanisms compared with Sicot 53. Cultivar specific thermotolerance determination using gene profiling may be a useful tool for understanding the underlying basis of physiological and biochemical responses to high temperature stress in the growth cabinet. There is future opportunity for profiling genes associated with heat stress and heat tolerance for identification of key genes associated with superior cultivar performance under high temperature stress and characterisation of these genes under field conditions. This research has identified cultivar differences in yield under field conditions and has identified multiple physiological and biochemical pathways that may contribute to these differences. Future characterisation of genes associated with heat stress and heat tolerance under growth cabinet conditions may be extended to field conditions, thus providing the underlying basis of the response of cotton to high temperature stress. Electron transport rate and relative electrical conductivity were found to be rapid and reliable determinants of cultivar specific thermotolerance and hence may be extended to broad-spectrum screening of a range of cotton cultivars and species and under a range of abiotic stress. This will enable the identification of superior cotton cultivars for incorporation into local breeding programs for Australian and American cotton production systems.
8

Écophysiologie de l'épinette noire des pessières à mousses et à lichens nordiques

Dally-Bélanger, Catherine 12 1900 (has links)
Les changements climatiques sont susceptibles d’affecter la croissance, le développement et la régénération des pessières noires de la forêt boréale. Les échecs de régénération dans les pessières à mousses (PM) de l’ouest du Québec causent des trouées dans la mosaïque forestière dense et augmentent la proportion de pessières à lichens (PL) dans le paysage. Les objectifs de l’étude sont de déterminer si les caractéristiques contrastantes des PM et des PL engendrent différents taux de photosynthèse maximale (Amax) chez les épinettes noires sur un gradient latitudinal ou saisonnier. Ensuite, l’étude tentera de déterminer si le Amax des individus reflète leurs capacités physiologiques par leur taux de carboxylation maximal (Vcmax) et de transport des électrons maximal (Jmax) extraits de courbes de réponse au CO2. Les taux de Vcmax et Jmax sont différents entre les PM et les PL car l’acquisition de ces nutriments semble différente. La latitude influence les valeurs de Vcmax et Jmax, mais l’effet serait causé par les caractéristiques floristiques et la composition du sol des placettes plutôt que par la latitude. Les capacités physiologiques ne se reflètent pas dans les valeurs de Amax, autant pour le type de peuplement que la latitude, car Amax serait limité par la concentration en CO2 qui ne permet pas la saturation de l’enzyme rubisco. Malgré l’absence de différence entre le Amax des PM et des PL, l’augmentation de la concentration en CO2 et de la température risque de créer un écart de Amax entre les types de peuplement, considérant leurs capacités physiologiques différentes. / Climate change is likely to affect the growth, development and regeneration of black spruce stands across the boreal forest. Regeneration failures cause gaps in the dense black spruce-feathermoss (BSFM) mosaic increasing the landscape proportion of open lichen-woodland (LW). The aims of the study are to determine whether the contrasting characteristics of BSFM and LW induce different light-saturated maximum photosynthesis (Amax) in black spruce trees across a latitudinal or seasonal gradient. Then the study will attempt to determine if Amax is likely to reflect their physiological capacities based on their maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) derived from CO2 response curves. Vcmax and Jmax are different between BSFM and LW mainly because nutrient acquisition seems different between stand types. Latitude affects values of Vcmax and Jmax, but the effect could be explained by soil and vegetation composition between experimental plots rather than by latitude. Physiological capacities do not match Amax values for stand type and latitude because Amax would be limited by CO2 concentration which does not allow saturation of rubisco. Despite the lack of difference between the Amax of BSFM and LW stands, future increase in CO2 concentration and temperature could induce a gap between their respective photosynthesis rates because of their different physiological capacities.
9

Analysis of the Sediment Transport Capabilities of FESWMS FST2DH

Ipson, Mark K. 19 August 2006 (has links) (PDF)
Many numeric models simulate the transport of sediment within rivers and streams. Engineers use such models to monitor the overall condition of a river or stream and to analyze the impact that the aggradation and degradation of sediment has on the stability of bridge piers and other features within a stretch of a river or stream. A model developed by the Federal Highway Administration, FST2DH, was recently modified to include the simulation of sediment movement within a channel. The tools for modeling sediment movement with FST2DH remain unproven. This thesis examines the sediment capabilities of FST2DH. It evaluates the sediment results for reasonableness and compares the results to those obtained from a sediment transport model developed by the Army Corps of Engineers, SED2D WES. Resulting concentrations from another program created by the Army Corps of Engineers, SAMwin, provide additional data comparison for FST2DH sediment solutions. Several test cases for laboratory flumes give additional insight into the model's functionality. Finally, this thesis suggests further enhancements for the sediment capabilities of the FST2DH model and provides direction for future research of the sediment transport capabilities of FST2DH. Results show that FST2DH appropriately models sediment movement in channels with clear-water and equilibrium transport rate inflow conditions. Transport formulas found to be functional include the Engelund—Hansen, Yang sand and gravel, and Meyer-Peter—Mueller equations. FST2DH has difficulty modeling channels with user-specified inflow concentrations or transport rates, models with very small particles, models containing hydraulic jumps, and models with small elements. The test cases that successfully run to completion provide appropriate patterns of scour and deposition. Other trends in the results further verify the functionality of many of the sediment transport options in FST2DH.

Page generated in 0.0555 seconds