1 |
Effect of environmental stress and management on grain and biomass yield of finger millet (Eleusine coracana (L.) Gaertn.)Opole, Rachel Adoyo January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / P.V. Vara Prasad / Productivity of grain crops is highly sensitive to changing climates and crop management practices. Response of finger millet [Eleusine coracana (L.) Gaertn.] to high temperature stress, and intensive management practices such as increased seeding rates and fertilizer application are not clearly understood. The objectives of this research were to determine the effects of (a) season-long, and short episodes of high temperature stress on growth and yield traits of finger millet, (b) seeding rates and nitrogen fertilizer application rates on grain and biomass yield, and (c) to evaluate the finger millet minicore collection for high grain and biomass yield. Controlled environment studies were conducted to determine the effects of high temperature stress on physiological, growth and yield traits. Field studies were conducted in Manhattan and Hays (Kansas) and Alupe (Kenya) to determine the effects of seeding and nitrogen fertilizer rates on growth and yield traits. Finger millet minicore collection was evaluated under field conditions in India, for phenology, growth and yield traits. Season long high temperature stress of 36/26 or 38/28°C compared to 32/22°C decreased panicle emergence, number of seeds per panicle, grain yield and harvest index. Finger millet was most sensitive to short episodes (10 d) of high temperature (40/30°C) during booting, panicle emergence and flowering stages, resulting in lower number of seeds, and grain yield. Finger millet responded to the interaction between environmental (locations) and temporal (years) factors. In general, locations with higher rainfall had greater grain and biomass yield than those with low rainfall. There was no influence of seeding rates (3.2 or 6.0 kg ha[superscript]-1) at Hays and Alupe. However, in one of the two years in Manhattan, higher seeding rate of 6.0 kg ha[superscript]-1 increased grain yield compared to 3.2 kg ha[superscript]-1. There was no influence of nitrogen rates (0, 30, 60 or 90 kg ha[superscript]-1) on grain or biomass yield at all three locations. However, higher fertilizer rates had greater percentage lodging. The finger millet minicore collection displayed large ranges for most quantitative traits including days to flowering, plant height, number of fingers panicle[superscript]-1, grain yield, biomass yield, and lodging; and had >60% heritability. Some of the genotypes from the minicore collection have the potential to increase grain and biomass yield and abiotic stress tolerance of finger millet.
|
2 |
Targeted over-expression of hsp22 and the maintenance of locomotor activity of third instar larvae of Drosophila melanogaster at high temperaturesJoshi, Namrata 02 October 2007 (has links)
Hsp22 has been implicated in stress tolerance and longevity in various organisms though its role in Drosophila melanogaster larval thermal tolerance has not yet been investigated. I undertook this project to determine if over-expression of hsp22 in either muscle or motor neurons could alter locomotor ability at high temperature in third instar larvae of D. melanogaster. A combination of the UAS-gal4 and tet-On promoter systems was used to over-express transgenic hsp22 in the larvae. A β-galactosidase assay was used to determine the level of gene expression following administration of different amounts of tetracycline. A concentration of 100 μg/ml of tetracycline was found to elicit appreciably higher expression of the reporter gene than 0 and 0.1 μg/ml of tetracycline. Locomotor ability of larvae was assessed at a temperature of approximately 400C by measuring the time to movement failure (TMF). Larvae that were fed 100 μg/ml of tetracycline showed a significant decline in the TMF, which could be attributed to the presence of tetracycline at a concentration of 100 μg/ml. Possible reasons behind the lack of a noticeable effect of hsp22 over-expression on the TMF are discussed. The detrimental effect of tetracycline could be attributed to the decline in mitochondrial translation or a decline in the population of endogenous bacteria, which are known to exert positive effects on the development and function of Drosophila larvae. / Thesis (Master, Biology) -- Queen's University, 2007-10-01 14:24:15.801
|
3 |
Physiological and lipidomic characterization of high temperature stress and traits associated with tolerance in wheatNarayanan, Sruthi January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / P. V. Vara Prasad / High temperature is a major environmental factor that limits wheat productivity. Climate models predict greater increases in night temperature than in day temperature. The objectives of this research were to quantify the effects of high day and night temperatures during anthesis on physiological (chlorophyll fluorescence, chlorophyll concentration, leaf level photosynthesis, lipid peroxidation and membrane damage), biochemical (reactive oxygen species [ROS] concentration and antioxidant capacity in leaves) and yield traits and membrane lipid profile and identify the lipids that are associated with high temperature response in wheat. Winter wheat genotypes Ventnor (heat tolerant) and Karl 92 (heat susceptible) were grown at optimum temperatures (25/15°C, maximum/minimum) until the onset of anthesis. Thereafter, plants were exposed to high night (HN, 25/24°C), high day (HD, 35/15°C), high day and night (HDN, 35/24°C) or optimum temperatures. Compared with optimum temperature, HN, HD and HDN increased ROS concentration, lipid peroxidation and membrane damage and decreased antioxidant capacity, photochemical efficiency, photosynthesis, seed set, grain number and grain yield. Impact of HN and HD was similar on all traits, when stress was imposed for seven days. High day and night temperatures resulted in significant changes in the amount of plastidic and extra-plastidic lipids and lipids with oxidized acyl chains (ox-lipids) in both genotypes. The decrease in lipid unsaturation levels of complex lipids at high temperatures was predominantly due to decrease in 18:3 fatty acid and increase in 18:1 and 16:0 fatty acids. We identified novel odd-numbered long-chain fatty acid-containing phospholipids, which were highly responsive to high temperature stress. Ventnor had higher amounts of sterol glycosides (SG) and lower amounts of ox-lipids at high temperatures than Karl 92; thus SGs and ox-lipids may be potential biomarkers for heat tolerance and susceptibility, respectively, in wheat. Co-occurring lipids, which are up-or-down-regulated together through time under high day and night temperatures formed groups, which were experiencing coordinated metabolism. These results suggest that high day and night temperatures during anthesis cause damage of a similar magnitude to wheat, if stress is imposed for a short term (seven days) and compositional changes in lipid profile in response to high temperature contribute to heat tolerance.
|
4 |
Elucidation of the physiologic and genetic characteristics of autonomous fruit-set under high temperature in chili pepper / トウガラシにおける高温期の自動着果性の生理的および遺伝的特性の解明Yamazaki, Akira 23 January 2023 (has links)
京都大学 / 新制・論文博士 / 博士(農学) / 乙第13529号 / 論農博第2910号 / 新制||農||1096(附属図書館) / 学位論文||R5||N5425(農学部図書室) / 京都大学大学院農学研究科農学専攻 / (主査)教授 中﨑 鉄也, 教授 土井 元章, 教授 樋口 浩和 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
5 |
Effects of drought and/or high temperature stress on wild wheat relatives (AEGILOPS species) and synthetic wheats.Pradhan, Gautam Prasad January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / P.V. Vara Prasad / High temperature (HT) and drought are detrimental to crop productivity, but there is limited variability for these traits among wheat ([italics]Triticum aestivum[end italics] L.) cultivars. Five [italics]Aegilops[end italics] species were screened to identify HT (52 accessions) and drought (31 accessions) tolerant species/accessions and ascertaining traits associated with tolerance. Four synthetic wheats were studied to quantify independent and combined effects of HT and drought. [italics]Aegilops[end italics] species were grown at 25/19°C day/night and 18 h photoperiod. At anthesis, HT was imposed by transferring plants to growth chambers set at 36/30°C, whereas in another experiment, drought was imposed by withholding irrigation. Synthetic wheats were grown at 21/15°C day/night and 18 h photoperiod. At anthesis or 21 d after anthesis, plants were exposed to optimum condition (irrigation + 21/15°C), HT (irrigation + 36/30°C), drought (withhold irrigation + 21/15°C), and combined stress (withhold irrigation + 36/30°C). Stresses were imposed for 16 d. High temperature and drought stress significantly decreased chlorophyll, grain number, individual grain weight, and grain yield of [italics]Aegilops[end italics] species (≥ 25%). Based on a decrease in grain yield, [italics]A. speltoides[end italics] and [italics]A. geniculata[end italics] were most tolerant (~ 61% decline), and [italics]A. longissima[end italics] was highly susceptible to HT stress (84% decline). Similarly, [italics]A. geniculata[end italics] had greater tolerance to drought (48% decline) as compared to other species (≥ 73% decline). Tolerance was associated with higher grains spike [superscript]-1 and/or heavier grains. Within [italics]A. speltoides[end italics], accession TA 2348 was most tolerant to HT with 13.5% yield decline and a heat susceptibility index (HSI) 0.23. Among [italics]A. geniculata[end italics], TA 2899 and TA 1819 were moderately tolerant to HT with an HSI 0.80. TA 10437 of [italics]A. geniculata[end italics] was the most drought tolerant accession with 7% yield decline and drought susceptibility index 0.14. Irrespective of the time of stress, HT, drought, and combined stress decreased both individual grain weight and grain yield of synthetic wheats by ≥ 37%, 26%, and 50%, respectively. These studies suggest a presence of genetic variability among [italics]Aegilops[end italics] species that can be utilized in breeding wheat for HT and drought tolerance at anthesis; and combined stress of drought and high temperature on synthetic wheats are hypo-additive in nature.
|
6 |
Thermotolerance of cottonCottee, Nicola Sandra January 2009 (has links)
Doctor of Philosophy (PhD) / The Australian cotton industry has developed high yielding and high quality fibre production systems and attributes a significant contribution of this achievement to highly innovative breeding programs, specifically focused on the production of premium quality lint for the export market. Breeding programs have recently shifted attention to the development of new germplasm with superior stress tolerance to minimise yield losses attributed to adverse environmental conditions and inputs such as irrigation, fertilisers and pesticides. Various contributors to yield, such as physiology, biochemistry and gene expression have been implemented as screening tools for tolerance to high temperatures under growth cabinet and laboratory conditions but there has been little extension of these mechanisms to field based systems. This study evaluates tools for the identification of specific genotypic thermotolerance under field conditions using a multi-level ‘top down’ approach from crop to gene level. Field experiments were conducted in seasons 1 (2006) and 3 (2007) at Narrabri (Australia) and season 2 (2006) in Texas (The United States of America) and were supplemented by growth cabinet experiments to quantify cultivar differences in yield, physiology, biochemical function and gene expression under high temperatures. Whole plants were subjected to high temperatures in the field through the construction of Solarweave® tents and in the growth cabinet at a temperature of 42 oC. The effectiveness of these methods was then evaluated to establish a rapid and reliable screening tool for genotype specific thermotolerance that could potentially improve the efficiency of breeding programs and aid the development to high yielding cultivars for hot growing regions. Cotton cultivars Sicot 53 and Sicala 45 were evaluated for thermotolerance using crop level measurements (yield and fibre quality) and whole plant measurements (fruit retention) to determine the efficacy of these measurements as screening tools for thermotolerance under field conditions. Sicot 53 was selected as a relatively thermotolerant cultivar whereas Sicala 45 was selected as a cultivar with a lower relative thermotolerance and this assumption was made on the basis of yield in hot and cool environments under the CSIRO Australian cotton breeding program. Yield and fruit retention were lower under tents compared with ambient conditions in all 3 seasons. Yield and fruit retention were highly correlated in season 1 and were higher for Sicot 53 compared to Sicala 45 suggesting that fruit retention is a primary limitation to yield in a hot season. Thus yield and fruit retention are good indicators of thermotolerance in a hot season. Temperature treatment and cultivar differences were determined for fibre quality in seasons 1 and 3; however, quality exceeded the industry minimum thereby indicating that fibre quality is not a good determinant of thermotolerance. Physiological determinants of plant functionality such as photosynthesis, electron transport rate, stomatal conductance and transpiration rate were determined for cultivars Sicot 53 and Sicala 45 under the tents and an index of these parameters was also analysed to determine overall plant physiological capacity in the field. Physiological capacity was also determined under high temperatures in the growth cabinet using a light response curve at various levels of photosynthetically active radiation (PAR). Photosynthesis and electron transport rate decreased, whilst stomatal conductance and transpiration rate increased under the tents as well as under high temperatures in the growth cabinet. Photosynthesis and electron transport rate were higher for Sicot 53 but stomatal conductance and transpiration rate were higher for Sicala 45 under the tents. No cultivar differentiation was evident for plants grown under high temperatures in the growth cabinet. Temperature treatment and cultivar differences in physiological function were greater in a hot year (season 1), thereby indicating the importance of cultivar selection for thermotolerance in the presence of stress. Electron transport rate was correlated with yield in season 1, thus suggesting the suitability of this method for broad genotypic screening for thermotolerance under field conditions. Biochemical processes such as membrane integrity and enzyme viability were used to determine cultivar specific thermotolerance under high temperature stress in the laboratory, field and growth cabinet. Electrolyte leakage is an indicator of decreased membrane integrity and may be estimated by the relative electrical conductivity or relative cellular injury assays. The heat sensitivity of dehydrogenase activity, a proxy for cytochrome functionality and capacity for mitochondrial electron transport, may be quantified spectrophotometrically. Cellular membrane integrity and enzyme viability decreased sigmoidally with exposure to increasing temperatures in a water bath. Membrane integrity was higher for Sicot 53 compared with Sicala 45 under the tents and under high temperatures in the growth cabinet. No temperature treatment or cultivar differences were found for enzyme viability under the tents; however, enzyme viability for Sicala 45 was higher in the growth cabinet compared with Sicot 53. Relative electrical conductivity was strongly correlated with yield under ambient field conditions and under the tents, suggesting impairment of electron flow through photosynthetic and/or respiratory pathways, thus contributing to lower potential for ATP production and energy generation for yield contribution. Thus, the membrane integrity assay was considered to be a rapid and reliable tool for thermotolerance screening in cotton cultivars. Gene expression was examined for cultivars Sicot 53 and Sicala 45 grown under high (42 oC) temperatures in the growth cabinet. Rubisco activase expression was quantified using quantitative real-time polymerase chain reaction analysis and was decreased under high temperatures and was lower for Sicala 45 than Sicot 53. Maximum cultivar differentiation was found after 1.0 h exposure to high temperatures and hence, leaf tissue sampled from this time point was further analysed for global gene profiling using cDNA microarrays. Genes involved in metabolism, heat shock protein generation, electron flow and ATP generation were down-regulated under high temperatures in the growth cabinet and a greater number of genes were differentially expressed for Sicala 45, thereby indicating a higher level of heat stress and a greater requirement for mobilisation of protective and compensatory mechanisms compared with Sicot 53. Cultivar specific thermotolerance determination using gene profiling may be a useful tool for understanding the underlying basis of physiological and biochemical responses to high temperature stress in the growth cabinet. There is future opportunity for profiling genes associated with heat stress and heat tolerance for identification of key genes associated with superior cultivar performance under high temperature stress and characterisation of these genes under field conditions. This research has identified cultivar differences in yield under field conditions and has identified multiple physiological and biochemical pathways that may contribute to these differences. Future characterisation of genes associated with heat stress and heat tolerance under growth cabinet conditions may be extended to field conditions, thus providing the underlying basis of the response of cotton to high temperature stress. Electron transport rate and relative electrical conductivity were found to be rapid and reliable determinants of cultivar specific thermotolerance and hence may be extended to broad-spectrum screening of a range of cotton cultivars and species and under a range of abiotic stress. This will enable the identification of superior cotton cultivars for incorporation into local breeding programs for Australian and American cotton production systems.
|
7 |
Thermotolerance of cottonCottee, Nicola Sandra January 2009 (has links)
Doctor of Philosophy (PhD) / The Australian cotton industry has developed high yielding and high quality fibre production systems and attributes a significant contribution of this achievement to highly innovative breeding programs, specifically focused on the production of premium quality lint for the export market. Breeding programs have recently shifted attention to the development of new germplasm with superior stress tolerance to minimise yield losses attributed to adverse environmental conditions and inputs such as irrigation, fertilisers and pesticides. Various contributors to yield, such as physiology, biochemistry and gene expression have been implemented as screening tools for tolerance to high temperatures under growth cabinet and laboratory conditions but there has been little extension of these mechanisms to field based systems. This study evaluates tools for the identification of specific genotypic thermotolerance under field conditions using a multi-level ‘top down’ approach from crop to gene level. Field experiments were conducted in seasons 1 (2006) and 3 (2007) at Narrabri (Australia) and season 2 (2006) in Texas (The United States of America) and were supplemented by growth cabinet experiments to quantify cultivar differences in yield, physiology, biochemical function and gene expression under high temperatures. Whole plants were subjected to high temperatures in the field through the construction of Solarweave® tents and in the growth cabinet at a temperature of 42 oC. The effectiveness of these methods was then evaluated to establish a rapid and reliable screening tool for genotype specific thermotolerance that could potentially improve the efficiency of breeding programs and aid the development to high yielding cultivars for hot growing regions. Cotton cultivars Sicot 53 and Sicala 45 were evaluated for thermotolerance using crop level measurements (yield and fibre quality) and whole plant measurements (fruit retention) to determine the efficacy of these measurements as screening tools for thermotolerance under field conditions. Sicot 53 was selected as a relatively thermotolerant cultivar whereas Sicala 45 was selected as a cultivar with a lower relative thermotolerance and this assumption was made on the basis of yield in hot and cool environments under the CSIRO Australian cotton breeding program. Yield and fruit retention were lower under tents compared with ambient conditions in all 3 seasons. Yield and fruit retention were highly correlated in season 1 and were higher for Sicot 53 compared to Sicala 45 suggesting that fruit retention is a primary limitation to yield in a hot season. Thus yield and fruit retention are good indicators of thermotolerance in a hot season. Temperature treatment and cultivar differences were determined for fibre quality in seasons 1 and 3; however, quality exceeded the industry minimum thereby indicating that fibre quality is not a good determinant of thermotolerance. Physiological determinants of plant functionality such as photosynthesis, electron transport rate, stomatal conductance and transpiration rate were determined for cultivars Sicot 53 and Sicala 45 under the tents and an index of these parameters was also analysed to determine overall plant physiological capacity in the field. Physiological capacity was also determined under high temperatures in the growth cabinet using a light response curve at various levels of photosynthetically active radiation (PAR). Photosynthesis and electron transport rate decreased, whilst stomatal conductance and transpiration rate increased under the tents as well as under high temperatures in the growth cabinet. Photosynthesis and electron transport rate were higher for Sicot 53 but stomatal conductance and transpiration rate were higher for Sicala 45 under the tents. No cultivar differentiation was evident for plants grown under high temperatures in the growth cabinet. Temperature treatment and cultivar differences in physiological function were greater in a hot year (season 1), thereby indicating the importance of cultivar selection for thermotolerance in the presence of stress. Electron transport rate was correlated with yield in season 1, thus suggesting the suitability of this method for broad genotypic screening for thermotolerance under field conditions. Biochemical processes such as membrane integrity and enzyme viability were used to determine cultivar specific thermotolerance under high temperature stress in the laboratory, field and growth cabinet. Electrolyte leakage is an indicator of decreased membrane integrity and may be estimated by the relative electrical conductivity or relative cellular injury assays. The heat sensitivity of dehydrogenase activity, a proxy for cytochrome functionality and capacity for mitochondrial electron transport, may be quantified spectrophotometrically. Cellular membrane integrity and enzyme viability decreased sigmoidally with exposure to increasing temperatures in a water bath. Membrane integrity was higher for Sicot 53 compared with Sicala 45 under the tents and under high temperatures in the growth cabinet. No temperature treatment or cultivar differences were found for enzyme viability under the tents; however, enzyme viability for Sicala 45 was higher in the growth cabinet compared with Sicot 53. Relative electrical conductivity was strongly correlated with yield under ambient field conditions and under the tents, suggesting impairment of electron flow through photosynthetic and/or respiratory pathways, thus contributing to lower potential for ATP production and energy generation for yield contribution. Thus, the membrane integrity assay was considered to be a rapid and reliable tool for thermotolerance screening in cotton cultivars. Gene expression was examined for cultivars Sicot 53 and Sicala 45 grown under high (42 oC) temperatures in the growth cabinet. Rubisco activase expression was quantified using quantitative real-time polymerase chain reaction analysis and was decreased under high temperatures and was lower for Sicala 45 than Sicot 53. Maximum cultivar differentiation was found after 1.0 h exposure to high temperatures and hence, leaf tissue sampled from this time point was further analysed for global gene profiling using cDNA microarrays. Genes involved in metabolism, heat shock protein generation, electron flow and ATP generation were down-regulated under high temperatures in the growth cabinet and a greater number of genes were differentially expressed for Sicala 45, thereby indicating a higher level of heat stress and a greater requirement for mobilisation of protective and compensatory mechanisms compared with Sicot 53. Cultivar specific thermotolerance determination using gene profiling may be a useful tool for understanding the underlying basis of physiological and biochemical responses to high temperature stress in the growth cabinet. There is future opportunity for profiling genes associated with heat stress and heat tolerance for identification of key genes associated with superior cultivar performance under high temperature stress and characterisation of these genes under field conditions. This research has identified cultivar differences in yield under field conditions and has identified multiple physiological and biochemical pathways that may contribute to these differences. Future characterisation of genes associated with heat stress and heat tolerance under growth cabinet conditions may be extended to field conditions, thus providing the underlying basis of the response of cotton to high temperature stress. Electron transport rate and relative electrical conductivity were found to be rapid and reliable determinants of cultivar specific thermotolerance and hence may be extended to broad-spectrum screening of a range of cotton cultivars and species and under a range of abiotic stress. This will enable the identification of superior cotton cultivars for incorporation into local breeding programs for Australian and American cotton production systems.
|
Page generated in 0.1214 seconds