211 |
The solution of plane harmonic and biharmonic boundary value problems in the theory of elasticity /Lo, Chunchang January 1964 (has links)
No description available.
|
212 |
A universal two-way approach for estimating unknown frequencies for unknown number of sinusoids in a signal based on eigenspace analysis of Hankel matrixAhmed, Adeel, Hu, Yim Fun, Noras, James M., Pillai, Prashant 25 April 2015 (has links)
Yes / We develop a novel approach to estimate the n unknown constituent frequencies of a noiseless signal that comprises of unknown number, n, of sinusoids of unknown phases and unknown amplitudes. The new two way approach uses two constraints to accurately estimate the unknown frequencies of the sinusoidal components in a signal. The new approach serves as a verification test for the estimated unknown frequencies through the estimated count of the unknown number of frequencies. The Hankel matrix, of the time domain samples of the signal, is used as a basis for further analysis in the Pisarenko harmonic decomposition. The new constraints, the Existence Factor (EF) and the Component Factor (CF), have been introduced in the methodology based on the relationships between the components of the sinusoidal signal and the eigenspace of the Hankel matrix. The performance of the developed approach has been tested to correctly estimate any number of frequencies within a signal with or without a fixed unknown bias. The method has also been tested to accurately estimate the very closely spaced low frequencies. / Innovate UK
|
213 |
The Mattila-Sjölin Problem for TrianglesRomero Acosta, Juan Francisco 08 May 2023 (has links)
This dissertation contains work from the author's papers [35] and [36] with coauthor Eyvindur Palsson. The classic Mattila-Sjolin theorem shows that if a compact subset of $mathbb{R}^d$ has Hausdorff dimension at least $frac{(d+1)}{2}$ then its set of distances has nonempty interior. In this dissertation, we present a similar result, namely that if a compact subset $E$ of $mathbb{R}^d$, with $d geq 3$, has a large enough Hausdorff dimension then the set of congruence classes of triangles formed by triples of points of $E$ has nonempty interior. These types of results on point configurations with nonempty interior can be categorized as extensions and refinements of the statement in the well known Falconer distance problem which establishes a positive Lebesgue measure for the distance set instead of it having nonempty interior / Doctor of Philosophy / By establishing lower bounds on the Hausdorff dimension of the given compact set we can guarantee the existence of lots of triangles formed by triples of points of the given set. This type of result can be categorized as an extension and refinement of the statement in the well known Falconer distance problem which establishes that if a compact set is large enough then we can guarantee the existence of a significant amount of distances formed by pairs of points of the set
|
214 |
Bounds for Bilinear Analogues of the Spherical Averaging OperatorSovine, Sean Russell 12 May 2022 (has links)
This thesis contains work from the author's papers Palsson and Sovine (2020); Iosevich, Palsson, and Sovine (2022); and Palsson and Sovine (2022) with coauthors Eyvindur Palsson and Alex Iosevich. These works establish new $L^p$-improving, quasi-Banach, and sparse bounds for several bilinear and multilinear operators that generalize the linear spherical average to the multilinear setting, and maximal variants of these operators, with an emphasis on the triangle averaging operator and the bilinear spherical averaging operator. / Doctor of Philosophy / This thesis establishes new regularity properties for several mathematical operations that generalize the operation of taking the average of a function over a sphere to operations that average the product of several input functions over a surface to produce a single output function. These operations include the triangle averaging operator, the $k$-simplex averaging operators for $k$ an integer greater than 1, and the bilinear spherical averaging operator, as well as maximal operators obtained by allowing the radius of the averaging surface to vary over some range of values.
|
215 |
Impact of System Impedance on Harmonics Produced by Variable Frequency Drives (VFDs)Morton, Daniel David 11 May 2015 (has links)
Variable Frequency Drives (VFDs) are utilized in commercial and industrial facilities to improve motor efficiency and provide process flexibility. VFDs are nonlinear loads that inject harmonic currents into the power system, and result in harmonic voltages across the system impedance. This harmonic distortion can negatively impact the performance of other sensitive loads in the system.
If a VFD serves a critical function, it may be necessary to supply the VFD from a Diesel Generator or Uninterruptible Power Supply (UPS). These sources have relatively high impedance when compared to a standard utility source, and will result in greater harmonic voltage distortion. This increases the likelihood of equipment failure due to harmonics. The full extent of the impact, however, is typically unknown until an extensive harmonic analysis is performed or the system is installed and tested.
This thesis evaluates the impact that source impedance has on the harmonic voltage distortion that is produced by nonlinear loads such as VFDs. An ideal system of varying source types (Utility, Generator and UPS) and varying VFD rectifier technologies (6-Pulse, 12-Pulse and 18-Pulse) is created to perform this analysis and plot the results. The main output of this thesis is a simplified methodology for harmonic analysis that can be implemented when designing a power system with a VFD serving a critical function and a high impedance source like a generator or UPS. Performing this analysis will help to ensure that other sensitive loads will operate properly in the system. / Master of Science
|
216 |
Prediction of high-speed shaft natural frequencies employing harmonic excitationLehmann, Katherine Jeanne January 1983 (has links)
A shaft and bearing system was developed with natural frequencies in the range of 8,000 to 60,000 rpm for the purpose of determining the practicality of low-speed harmonic excitation of high-speed natural frequencies. The analytical development and analysis utilized SPAR, a finite element program, and a bearing stiffness program to determine frequencies for the first through fourth harmonics of natural frequencies under 60,000 rpm.
A misaligned flexible disc coupling was used to input a forcing function with a frequency of N times the running speed and thereby excite the natural frequencies in the Nth harmonic at the running speed.
Most of the analytical results had corresponding experimental results; however, many increased vibration levels did not correlate with analytical results. Four frequency response plots are presented. A comparison of these plots and analytical results are presented in the form of a Campbell diagram. Although the experimental results are not supportive enough to be conclusive, they do indicate that low-speed harmonic excitation may be a method of predicting high-speed natural frequencies. Major difficulties were encountered in the experimental program which are described, and some alternative investigations are proposed. / M.S.
|
217 |
Weighted Banach spaces of harmonic functionsZarco García, Ana María 26 October 2015 (has links)
[EN] The Ph.D. thesis "Weighted Banach Spaces of harmonic functions" presented here, treats several topics of functional analysis such as weights, composition operators, Fréchet and Gâteaux differentiability of the norm and isomorphism classes.
The work is divided into four chapters that are preceded by one in which we introduce the notation and the well-known properties that we use in the proofs in the rest of the chapters.
In the first chapter we study Banach spaces of harmonic functions on open sets of R^d endowed with weighted supremun norms. We define the harmonic associated weight, we explain its properties, we compare it with the holomorphic associated weight introduced by Bierstedt, Bonet and Taskinen, and we find differences and conditions under which they are exactly the same and conditions under which they are equivalent.
The second chapter is devoted to the analysis of composition operators with holomorphic symbol between weighted Banach spaces of pluriharmonic functions. We characterize the continuity, the compactness and the essential norm of composition operators among these spaces in terms of their weights, thus extending the results of Bonet, Taskinen, Lindström, Wolf, Contreras, Montes and others for composition operators between spaces of holomorphic functions. We prove that for each value of the interval [0,1] there is a composition operator between weighted spaces of harmonic functions such that its essential norm attains this value.
Most of the contents of Chapters 1 and 2 have been published by E. Jordá and the author in [48].
The third chapter is related with the study of Gâteaux and Fréchet differentiability of the norm. The \v{S}mulyan criterion states that the norm of a real Banach space X is
Gâteaux differentiable at x\inX if and only if there exists x^* in the unit ball of the dual of X weak^* exposed by x and the norm is Fréchet differentiable at x if and only if x^* is weak^* strongly exposed in the unit ball of the dual of X by x.
We show that in this criterion the unit ball of the dual of X can be replaced by a smaller convenient set, and we apply this extended criterion to characterize the points of Gâteaux and Fréchet differentiability of the norm of some spaces of harmonic functions and continuous functions with vector values.
Starting from these results we get an easy proof of the theorem about the Gâteaux differentiability of the norm for spaces of compact linear operators announced by Heinrich and published without proof.
Moreover, these results allow us to obtain applications to classical Banach spaces as the space H^\infty of bounded holomorphic functions in the disc and the algebra A(\overline{\D}) of continuous functions on \overline{\D} which are holomorphic on \D.
The content of this chapter has been included by E. Jordá and the author in [47].
Finally, in the forth chapter we show that for any open set U of R^d and weight v on U, the space hv0(U) of harmonic functions such that multiplied by the weight vanishes at the boundary on U is almost isometric to a closed subspace of c0, extending a theorem due to Bonet and Wolf for the spaces of holomorphic functions Hv0(U) on open sets U of C^d.
Likewise, we also study the geometry of these weighted spaces inspired by a work of Boyd and Rueda, examining topics such as the v-boundary and v-peak points and we give the conditions that provide examples where hv0(U) cannot be isometric to c0. For a balanced open set U of R^d, some geometrical conditions in U and convexity in the weight v ensure that hv0(U) is not rotund. These results have been published by E. Jordá and the author [46]. / [ES] La presente memoria, "Espacios de Banach ponderados de funciones armónicas ", trata diversos tópicos del análisis funcional, como son las funciones peso, los operadores de composición, la diferenciabilidad Fréchet y Gâteaux de la norma y las clases de isomorfismos.
El trabajo está dividido en cuatro capítulos precedidos de uno inicial en el que introducimos la notación y las propiedades conocidas que usamos en las demostraciones del resto de capítulos.
En el primer capítulo estudiamos espacios de Banach de funciones armónicas en conjuntos abiertos de R^d dotados de normas del supremo ponderadas. Definimos el peso asociado armónico, explicamos sus propiedades, lo comparamos con el peso asociado holomorfo introducido por Bierstedt, Bonet y Taskinen, y encontramos diferencias y condiciones para que sean exactamente iguales y condiciones para que sean equivalentes.
El capítulo segundo está dedicado al análisis de los operadores de composición con símbolo holomorfo entre espacios de Banach ponderados de funciones pluriarmónicas. Caracterizamos la continuidad, la compacidad y la norma esencial de operadores de composición entre estos espacios en términos de los pesos, extendiendo los resultados de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes y otros para operadores de composición entre espacios de funciones holomorfas. Probamos que para todo valor del intervalo [0,1] existe un operador de composición sobre espacios ponderados de funciones armónicas tal que su norma esencial alcanza dicho valor.
La mayoría de los contenidos de los capítulos 1 y 2 han sido publicados por E. Jordá y la autora en [48].
El capítulo tercero está relacionado con el estudio de la diferenciabilidad Gâteaux y Fréchet de la norma. El criterio de \v{S}mulyan establece que la norma de un espacio de Banach real X es Gâteaux diferenciable en x\in X si y sólo si existe x^* en la bola unidad del dual de X débil expuesto por x y la norma es Fréchet diferenciable en x si y sólo si x^*es débil fuertemente expuesto en la bola unidad del dual de X por x.
Mostramos que en este criterio la bola del dual de X puede ser reemplazada por un conjunto conveniente más pequeño, y aplicamos este criterio extendido para caracterizar los puntos de diferenciabilidad Gâteaux y Fréchet de la norma de algunos espacios de funciones armónicas y continuas con valores vectoriales. A partir de estos resultados conseguimos una prueba sencilla del teorema sobre la diferenciabilidad Gâteaux de la norma de espacios de operadores lineales compactos enunciado por Heinrich y publicado sin la prueba. Además, éstos nos permiten obtener aplicaciones para espacios de Banach clásicos como H^\infty de funciones holomorfas acotadas en el disco y A(\overline{\D}) de funciones continuas en \overline{\D} que son holomorfas en \D.
Los contenidos de este capítulo han sido incluidos por E. Jordá y la autora en [47].
Finalmente, en el capítulo cuarto mostramos que para cualquier abierto U contenido en R^d y cualquier peso v en U, el espacio hv0(U), de funciones armónicas tales que multiplicadas por el peso desaparecen en el infinito de U, es casi isométrico a un subespacio cerrado de c0, extendiendo un teorema debido a Bonet y Wolf para los espacios de funciones holomorfas Hv0(U) en abiertos U de C^d. Así mismo, inspirados por un trabajo de Boyd y Rueda también estudiamos la geometría de estos espacios ponderados examinando tópicos como la v-frontera y los puntos v-peak y damos las condiciones que proporcionan ejemplos donde hv0(U) no puede ser isométrico a c0. Para un conjunto abierto equilibrado U de R^d, algunas condiciones geométricas en U y sobre convexidad en el peso v aseguran que hv0(U) no es rotundo. Estos resultados han sido publicados por E. Jordá y la autora en [46]. / [CA] La present memòria, "Espais de Banach ponderats de funcions harmòniques", tracta diversos tòpics de l'anàlisi funcional, com són les funcions pes, els operadors de composició, la diferenciabilitat Fréchet i Gâteaux de la norma i les clases d'isomorfismes. El treball està dividit en quatre capítols precedits d'un d'inicial en què introduïm la notació i les propietats conegudes que fem servir en les demostracions de la resta de capítols.
En el primer capítol estudiem espais de Banach de funcions harmòniques en conjunts oberts de R^d dotats de normes del suprem ponderades. Definim el pes associat harmònic, expliquem les seues propietats, el comparem amb el pes associat holomorf introduït per
Bierstedt, Bonet i Taskinen, i trobem diferències i condicions perquè siguen exactament iguals i condicions perquè siguen equivalents.
El capítol segon està dedicat a l'anàlisi dels operadors de composició amb símbol holomorf entre espais de Banach ponderats de funcions pluriharmòniques. Caracteritzem la continuïtat, la compacitat i la norma essencial d'operadors de composició entre aquests espais en termes dels pesos, estenent els resultats de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes i altres per a operadors de composició entre espais de funcions holomorfes. Provem que per a tot valor de l'interval [0,1] hi ha un operador de composició sobre espais ponderats de funcions harmòniques tal que la seua norma essencial arriba aquest valor.
La majoria dels continguts dels capítols 1 i 2 han estat publicats per E. Jordá i l'autora en [48].
El capítol tercer està relacionat amb l'estudi de la diferenciabilitat Gâteaux y Fréchet de la norma. El criteri de \v{S}mulyan estableix que la norma d'un espai de Banach real X és Gâteaux diferenciable en x\inX si i només si existeix x^* a la bola unitat del dual de X feble exposat per x i la norma és Fréchet diferenciable en x si i només si x^* és feble fortament exposat a la bola unitat del dual de X per x. Mostrem que en aquest criteri la bola del dual de X pot ser substituïda per un conjunt convenient més petit, i apliquem aquest criteri estès per caracteritzar els punts de diferenciabilitat Gâteaux i Fréchet de la norma d'alguns espais de funcions harmòniques i contínues amb valors vectorials.
A partir d'aquests resultats aconseguim una prova senzilla del teorema sobre la diferenciabilitat Gâteaux de la norma d'espais d'operadors lineals compactes enunciat per Heinrich i publicat sense la prova.
A més, aquests ens permeten obtenir aplicacions per a espais de Banach clàssics com l'espai H^\infty de funcions holomorfes acotades en el disc i l'àlgebra A(\overline{\D}) de funcions contínues en \overline{\D} que són holomorfes en \D.
Els continguts d'aquest capítol han estat inclosos per E. Jordá i l'autora en [47].
Finalment, en el capítol quart mostrem que per a qualsevol conjunt obert U de R^d i
qualsevol pes v en U, l'espai hv0(U), de funcions harmòniques tals que multiplicades pel pes
desapareixen en el infinit d'U, és gairebé isomètric a un subespai tancat de c0, estenent un teorema degut a Bonet y Wolf per als espais de funcions holomorfes Hv0(U) en oberts U de C^d.
Així mateix, inspirats per un treball de Boyd i Rueda també estudiem la geometria d'aquests espais ponderats examinant tòpics com la v-frontera i els punts v-peak i donem les condicions que proporcionen exemples on hv0(U) no pot ser isomètric a c0. Per a un conjunt obert equilibrat U de R^d, algunes condicions geomètriques en U i sobre convexitat en el pes v asseguren que hv0(U) no és rotund. Aquests resultats han estat publicats per E. Jordá i l'autora en [46]. / Zarco García, AM. (2015). Weighted Banach spaces of harmonic functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56461
|
218 |
Prediction of snap-through instability under harmonic excitationCheng, Ching-Chuan 14 April 2009 (has links)
A method is developed to predict the critical harmonic excitation of systems undergoing nonlinear oscillations. The method is based on the total energy approach which limits the system responses within a region bounded by a critical total energy in the phase space.
Three one-degree-of-freedom nonlinear systems are investigated. Their governing ordinary differential equations are associated with a quadratic nonlinearity and/or a cubic nonlinearity. The study also is extended to a two-degree-of-freedom nonlinear system.
The harmonic balance method is the analytical technique used in solving the nonlinear ordinary differential equations. In comparison with the approximate analytical solutions, numerical approaches are implemented. / Master of Science
|
219 |
Universal approach for estimating unknown frequencies for unknown number of sinusoids in a signalAhmed, A., Hu, Yim Fun, Pillai, Prashant January 2013 (has links)
No / This paper presents a new approach to estimate the unknown frequencies of the constituent sinusoids in a noiseless signal. The signal comprising of unknown number of sinusoids of unknown amplitudes and unknown phases is measured in the time domain. The Hankel matrix of measured samples is used as a basis for further analysis in the Pisarenko harmonic decomposition. A new constraint, the Existence Factor (EF), has been introduced in the methodology based on the relationship between the frequencies of the unknown sinusoids and the eigenspace of Hankel matrix of signal's samples. The accuracy of the method has been tested through multiple simulations on different signals with an unknown number of sinusoidal components. Results showed that the proposed method has efficiently estimated all the unknown frequencies.
|
220 |
Properties and applications of two dimensional optical spatial solitons in a quadratic nonlinear mediumFuerst, Russell Alexander 01 January 1999 (has links)
No description available.
|
Page generated in 0.0416 seconds