• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 58
  • 27
  • 19
  • 17
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling the growth and resource allocation dynamics of juvenile salmonids

Jones, Wayne January 2002 (has links)
No description available.
2

A Multifunctional MEMS Pressure and Temperature Sensor for Harsh Environment Applications

Najafi Sohi, Ali January 2013 (has links)
The objective of this thesis was to develop a fast-response multifunctional MEMS (Micro Electro Mechanical Systems) sensor for the simultaneous measurement of in-cylinder pressure and temperature in an internal combustion (IC) engine. In a representative IC engine, the pressure and temperature can reach up to about 1.6 MPa and 580 °C, respectively, at the time of injection during the compression stroke. At the peak of the combustion process, the pressure and temperature near the cylinder wall can go beyond 6 MPa and 1000 °C, respectively. Failure of current membrane-based MEMS pressure sensors operating at high temperatures is mainly caused by cross-sensitivity to temperature, which affects the pressure readout. In addition, the slow thermal response of temperature sensors used for such a dynamic application makes real-time sensing within a combustion engine very challenging. While numerous approaches have been taken to address these issues, no MEMS sensor has yet been reported that can carry out real-time measurements of in-cylinder pressure and temperature. The operation of the sensor proposed in this Thesis is based on a new non-planar and flexible multifunctional membrane, which responds to both pressure and temperature variations at the same time. The new design draws from standard membrane-based pressure and thermostatic-based temperature MEMS sensing principles to output two capacitance values. A numerical processing scheme uses these values to create a characteristic sensing plot which then serves to decouple the effects of pressure and temperature variations. This sensing scheme eliminates the effect of cross-sensitivity at high temperatures, while providing a short thermal response time. Thermal, mechanical and electrical aspects of the sensor performance were modeled. First, a semi-analytical thermo-mechanical model, based on classic beam theory, was tailored to the shape of the multifunctional membrane to determine the sensor’s response to pressure and temperature loading. ANSYS® software was used to verify this semi-analytical model against finite element simulations. Then the model was then used to calculate the capacitive outputs of the multifunctional MEMS sensor subjected to in-cylinder pressure and temperature loading during a complete cycle of operation of a typical IC engine as well as to optimize the sensor specifications. Several prototypes of the new sensing mechanism fabricated using the PolyMUMPs® foundry process were tested to verify its thermal behavior up to 125 °C. The experiments were performed using a ceramic heater mounted on a probe station with the device connected to a precision LCR-meter for capacitive readouts. Experimental results show good agreement of the temperature response of the sensor with the ANSYS® finite element simulations. Further simulations of the pressure and temperature response of different configurations of the multifunctional MEMS sensor were carried out. The simulations were performed on an array of 4200 multifunctional devices, each featuring a 0.5 µm thick silicon carbide membrane with an area of 25×25 µm2, connected in parallel shows that the optimized sensor system can provide an average sensitivity to pressure of up to 1.55 fF/KPa (over a pressure range of 0.1-6 MPa) and an average sensitivity to temperature of about 4.62 fF/°C (over a temperature range of 160-1000 °C) with a chip area of approximately 4.5 mm2. Assuming that the accompanying electronics can meaningfully measure a minimum capacitance change of 1 fF, this optimized sensor configuration has the potential to sense a minimum pressure change of less than 1 KPa and a minimum temperature change of less than 0.35 °C over the entire working range of the representative IC engine indicated above. In summary, the new developed multifunctional MEMS sensor is capable of measuring temperature and pressure simultaneously. The unique design of the membrane of the sensor minimizes the effect of cross-sensitivity to temperature of current MEMS pressure sensors and promises a short thermal response time. When materials such as silicon carbide are used for its fabrication, the new sensor may be used for real-time measurement of in-cylinder pressure and temperature in IC engines. Furthermore, a systematic optimization process is utilized to arrive at an optimum sensor design based on both geometry and properties of the sensor fabrication materials. This optimization process can also be used to accommodate other sensor configurations depending on the pressure and temperature ranges being targeted.
3

A Multifunctional MEMS Pressure and Temperature Sensor for Harsh Environment Applications

Najafi Sohi, Ali January 2013 (has links)
The objective of this thesis was to develop a fast-response multifunctional MEMS (Micro Electro Mechanical Systems) sensor for the simultaneous measurement of in-cylinder pressure and temperature in an internal combustion (IC) engine. In a representative IC engine, the pressure and temperature can reach up to about 1.6 MPa and 580 °C, respectively, at the time of injection during the compression stroke. At the peak of the combustion process, the pressure and temperature near the cylinder wall can go beyond 6 MPa and 1000 °C, respectively. Failure of current membrane-based MEMS pressure sensors operating at high temperatures is mainly caused by cross-sensitivity to temperature, which affects the pressure readout. In addition, the slow thermal response of temperature sensors used for such a dynamic application makes real-time sensing within a combustion engine very challenging. While numerous approaches have been taken to address these issues, no MEMS sensor has yet been reported that can carry out real-time measurements of in-cylinder pressure and temperature. The operation of the sensor proposed in this Thesis is based on a new non-planar and flexible multifunctional membrane, which responds to both pressure and temperature variations at the same time. The new design draws from standard membrane-based pressure and thermostatic-based temperature MEMS sensing principles to output two capacitance values. A numerical processing scheme uses these values to create a characteristic sensing plot which then serves to decouple the effects of pressure and temperature variations. This sensing scheme eliminates the effect of cross-sensitivity at high temperatures, while providing a short thermal response time. Thermal, mechanical and electrical aspects of the sensor performance were modeled. First, a semi-analytical thermo-mechanical model, based on classic beam theory, was tailored to the shape of the multifunctional membrane to determine the sensor’s response to pressure and temperature loading. ANSYS® software was used to verify this semi-analytical model against finite element simulations. Then the model was then used to calculate the capacitive outputs of the multifunctional MEMS sensor subjected to in-cylinder pressure and temperature loading during a complete cycle of operation of a typical IC engine as well as to optimize the sensor specifications. Several prototypes of the new sensing mechanism fabricated using the PolyMUMPs® foundry process were tested to verify its thermal behavior up to 125 °C. The experiments were performed using a ceramic heater mounted on a probe station with the device connected to a precision LCR-meter for capacitive readouts. Experimental results show good agreement of the temperature response of the sensor with the ANSYS® finite element simulations. Further simulations of the pressure and temperature response of different configurations of the multifunctional MEMS sensor were carried out. The simulations were performed on an array of 4200 multifunctional devices, each featuring a 0.5 µm thick silicon carbide membrane with an area of 25×25 µm2, connected in parallel shows that the optimized sensor system can provide an average sensitivity to pressure of up to 1.55 fF/KPa (over a pressure range of 0.1-6 MPa) and an average sensitivity to temperature of about 4.62 fF/°C (over a temperature range of 160-1000 °C) with a chip area of approximately 4.5 mm2. Assuming that the accompanying electronics can meaningfully measure a minimum capacitance change of 1 fF, this optimized sensor configuration has the potential to sense a minimum pressure change of less than 1 KPa and a minimum temperature change of less than 0.35 °C over the entire working range of the representative IC engine indicated above. In summary, the new developed multifunctional MEMS sensor is capable of measuring temperature and pressure simultaneously. The unique design of the membrane of the sensor minimizes the effect of cross-sensitivity to temperature of current MEMS pressure sensors and promises a short thermal response time. When materials such as silicon carbide are used for its fabrication, the new sensor may be used for real-time measurement of in-cylinder pressure and temperature in IC engines. Furthermore, a systematic optimization process is utilized to arrive at an optimum sensor design based on both geometry and properties of the sensor fabrication materials. This optimization process can also be used to accommodate other sensor configurations depending on the pressure and temperature ranges being targeted.
4

Compliant Electronics for Unusual Environments

Almislem, Amani Saleh Saad 09 1900 (has links)
Compliant electronics are an emerging class of electronics which offer physical flexibility in their structure. Such mechanical flexibility opens up opportunities for wide ranging applications. Nonetheless, compliant electronics which can be functional in unusual environments are yet to be explored. Unusual environment can constitute a harsh environment where temperature and/or pressure is much higher or lower than the usual room temperature and/or pressure. Unusual environment can be an aquatic environment, such as ocean/sea/river/pond, industrial processing related liquid and bodily fluid environment, external or internal for implantable electronics. Finally, unusual environment can also be conditions when extreme physical deformation is anomalously applied to compliant electronics in order to understand their performance and reliability under such extraordinary mechanical deformations. Therefore, in this thesis, three different aspects of compliant electronics are thoroughly studied, addressing challenges of material selection/optimization for unusual environment applications, focusing on electrical performance and mechanical flexible behavior. In the first part, performance of silicon-based high-performance complementary metal oxide semiconductor (CMOS) devices are studied under severe mechanical deformation. Next, a high-volume manufacturing compatible solution is offered to reduce the usage of toxic chemicals in semiconductor device fabrication. To accomplish this, Germanium Dioxide (GeO2) is simultaneously used as transient material and dielectric layer to realize a dissolvable/bioresorbable transient electronic system which can be potentially used for implantable electronics. Finally, wide bandgap semiconductor Gallium Nitride is studied to understand its mechanical flexibility under high temperature conditions. In summary, this research contributes to the advancement of material selection, optimization and process development towards achieving compliant and transient devices for novel applications in unusual environments.
5

Devitrification Kinetics and Optical Stability of Optical Fibers at High Temperatures

Yakusheva, Anastasia A. 07 June 2018 (has links)
Reliable sensing and monitoring systems based on optical fibers operating at high temperatures and in harsh environments are of high demand. One of the limitations of such systems is the devitrification of the fused silica based core and cladding glass at elevated temperatures. Crystallites can nucleate on the surface of the cladding and grow into the core. The formation of these crystalline flaws in the optical fiber causes stress concentration and extrinsic optical scattering and in addition leads to decreased mechanical properties and reduced optical stability. Commercial optical fibers of different compositions and core-cladding design were characterized in this study with respect to crystallization rate under various conditions. The optical stability was monitored with an optical spectrum analyzer. The crystallites were characterized with SEM and optical microscopy. The activation energies of crystallization for High OH and Low OH multimode fibers were estimated by measuring the crystal growth rate at different temperatures. The residual stress resulting from the formation of the crystals, which can lead to decreased mechanical performance of the fibers, was characterized with polarized light optical microscopy. The influence of water vapor in the atmosphere on the crystallization rate was determined. The features induced in the attenuation spectra were consistent with hydroxyl (OH) absorption peak. Spectral features such as thermal emission and hydroxyl absorption bands are discussed. The results obtained in this study can be used for selecting optical fibers for high temperature applications. / Master of Science / Reliable sensing and monitoring systems based on glass optical fibers operating at high temperatures and in harsh environments are in high demand. One of the limitations of such systems is the tendency of glass material to crystallize at elevated temperatures. Crystallites can nucleate on the surface of the fiber and grow inwards, impairing the optical and mechanical properties of the optical fiber. The formation of these crystalline flaws in the optical fiber can decrease the mechanical strength by causing stress concentrations and leading to formation of cracks, and reduce optical stability by causing light to scatter from the crystals. Commercial optical fibers of different compositions and geometry were characterized in this study with respect to crystal growth rate under various conditions, such as different temperatures (400-1350 °C), and different atmospheres (laboratory air and water vapor). The effect of crystals was demonstrated with respect to optical and mechanical performance. The results obtained in this study can be used for selecting optical fibers for high temperature applications.
6

The Relationship between Supervisors' Power Bases and Supervisory Styles

Tanaka, Hideyuki 20 December 2009 (has links)
Despite its critical role in counselor training, empirical research on clinical supervision is generally limited (Bernard & Goodyear, 2003; Ellis & Ladany, 2007). This is also applied to an area of power dynamics in supervision. This study tested the relationship between the two aspects of power dynamics; namely, supervisors' power bases (i.e., sources of influencing others) and supervisory styles (i.e., typical ways of shaping supervision), based on the system's approach to supervision model (Holloway, 1995). This research was a correlational design. Students in masters' and doctoral counseling programs were asked to respond to an online questionnaire packet via Survey MonkeyTM. Of those who responded, 492 students who took supervision with professor or doctoral student supervisors constituted the sample. Varied numbers of participants were used for each analysis after missing or extreme data were deleted. Supervisors' usage of power bases and supervisory styles were measured by the adopted version of Interpersonal Power Inventory (Raven, Schwarzwald, & Koslowsky, 1998) and Supervisory Style Inventory (SSI; Friedlander & Ward, 1984), respectively. In part 1, results of factor analyses revealed four first-order power factors and two higher-order power factors (Soft & Harsh). Schmeid-Leiman's (1957) solution was also applied. In part 2, result of correlation analysis in revealed that supervisors' usage of Soft or Soft-type power factor (Idealized Expert) was moderately positively correlated to all three supervisory styles but that usage of Harsh or Harsh-type factors (Compensatory Obligation, Relational Power, & Collaborative Alliance) was only weakly correlated to supervisory styles, for majority of supervisors. Similarly, results of regression analyses revealed that supervisory styles did not significantly predict supervisors' usage of Harsh factor, but both supervisory styles and usage of ix Harsh factor significantly predicted usage of Soft factor at moderate and strong level, respectively. The interpersonally-sensitive styles predicted Soft factor slightly more strongly than the other styles. It was concluded that supervisors who engaged in supervision with any one of three supervisory styles also tended to use more Soft or Soft-type factor when there are disagreements, but rarely used Harsh or Harsh types.
7

Life Stress, Maternal Inhibitory Control, and Quality of Parenting Behaviors

Farrar, Jessica 11 January 2019 (has links)
Negative life stress and maternal inhibitory control are both critical ingredients involved in the shaping and maintaining of the quality of parenting behaviors. This study explored both how the experience of stressful life events and inhibitory control relate to two particular types of parenting behaviors: harsh/controlling and autonomy-supportive. Given that these two types of parenting have broad implications for children’s developmental trajectories, it is important to further enhance our understanding of the etiological factors that both shape and maintain parenting practices. Utilizing a high-risk sample (i.e. low SES, high presence of documented child maltreatment) of mothers with pre-school aged children, this study did not support the relationship between the experience of stressful life events, maternal inhibitory control and quality of parenting. However, post hoc analyses of life stress using a measure of objective SES did yield a significant link between stress and the presence of autonomy-supportive parenting. This study expands the current understanding of how stress and inhibitory control relate to parenting behaviors. Implications of this study for practice and research are discussed.
8

Microsystems for Harsh Environments

Knaust, Stefan January 2015 (has links)
When operating microsystems in harsh environments, many conventionally used techniques are limiting. Further, depending on if the demands arise from the environment or the conditions inside the system, different approaches have to be used. This thesis deals with the challenges encountered when microsystems are used at high pressures and high temperatures. For microsystems operating at harsh conditions, many parameters will vary extensively with both temperature and pressure, and to maintain control, these variations needs to be well understood. Covered within this thesis is the to-date strongest membrane micropump, demonstrated to pump against back-pressures up to 13 MPa, and a gas-tight high pressure valve that manages pressures beyond 20 MPa. With the ability to manipulate fluids at high pressures in microsystems at elevated temperatures, opportunities are created to use green solvents like supercritical fluids like CO2. To allow for a reliable and predictable operation in systems using more than one fluid, the behavior of the multiphase flow needs to be controlled. Therefore, the effect of varying temperature and pressure, as well as flow conditions were investigated for multiphase flows of CO2 and H2O around and above the critical point of CO2. Also, the influence of channel surface and geometry was investigated. Although supercritical CO2 only requires moderate temperatures, other supercritical fluids or reactions require much higher temperatures. The study how increasing temperature affects a system, a high-temperature testbed inside an electron microscope was created. One of the challenges for high-temperature systems is the interface towards room temperature components. To circumvent the need of wires, high temperature wireless systems were studied together with a wireless pressure sensing system operating at temperatures up to 1,000 °C for pressures up to 0.3 MPa. To further extend the capabilities of microsystems and combine high temperatures and high pressures, it is necessary to consider that the requirements differs fundamentally. Therefore, combining high pressures and high temperatures in microsystems results in great challenges, which requires trade-offs and compromises. Here, steel and HTCC based microsystems may prove interesting alternatives for future high performance microsystems.
9

SILICON CARBIDE MEMS OSCILLATOR

Pehlivanoglu, Ibrahim Engin January 2008 (has links)
No description available.
10

Self-Calibrated Interferometric/Intensity-Based Fiber Optic Pressure Sensors

Xiao, Hai 04 September 2000 (has links)
To fulfill the objective of providing robust and reliable fiber optic pressure sensors capable of operating in harsh environments, this dissertation presents the detailed research work on the design, modeling, implementation, analysis, and performance evaluation of the novel fiber optic self-calibrated interferometric/intensity-based (SCIIB) pressure sensor system. By self-referencing its two channels outputs, for the first time to our knowledge, the developed SCIIB technology can fully compensate for the fluctuation of source power and the variations of fiber losses. Based on the SCIIB principle, both multimode and single-mode fiber-based SCIIB sensor systems were designed and successfully implemented. To achieve all the potential advantages of the SCIIB technology, the novel controlled thermal bonding method was proposed, designed, and developed to fabricate high performance fiber optic Fabry-Perot sensor probes with excellent mechanical strength and temperature stability. Mathematical models of the sensor in response to the pressure and temperature are studied to provide a guideline for optimal design of the sensor probe. The solid and detailed noise analysis is also presented to provide a better understanding of the performance limitation of the SCIIB system. Based on the system noise analysis results, optimization measures are proposed to improve the system performance. Extensive experiments have also been conducted to systematically evaluate the performance of the instrumentation systems and the sensor probes. The major test results give us the confidence to believe that the development of the fiber optic SCIIB pressure sensor system provides a reliable pressure measurement tool capable of operating in high pressure, high temperature harsh environments. / Ph. D.

Page generated in 0.0292 seconds