• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 22
  • 18
  • 12
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Causalité des marchés financiers : asymétrie temporelle et réseaux multi-échelles de meneurs et suiveurs / Causality in financial markets : time reversal asymmetry and multi-scale lead-lag networks

Cordi, Marcus 07 March 2019 (has links)
Cette thèse a pour but d’explorer la structure de causalité qui sous-tend les marchés financiers. Elle se concentre sur l’inférence multi-échelle de réseaux de causalité entre investisseurs dans deux bases de données contenant les identifiants des investisseurs. La première partie de cette thèse est consacrée à l’étude de la causalité dans les processus de Hawkes. Ces derniers définissent la façon dont l’activité d’un investisseur (par exemple) dépend du passé; sa version multivariée inclut l’interaction entre séries temporelles, à toutes les échelles. Les résultats principaux de cette partie est que l’estimation avec le maximum de vraisemblance des paramètres du processus changent remarquablement peu lorsque la direction du temps est inversée, tant pour les processus univariés que pour les processus multivariés avec noyaux d’influence mutuelle symétriques, et que la causalité effective de ces processus dépend de leur endogénéité. Cela implique qu’on ne peut pas utiliser ce type de processus pour l’inférence de causalité sans précautions. L’utilisation de tests statistiques permet la différentiation des directions du temps pour des longues données synthétiques. Par contre, l’analyse de données empiriques est plus problématique: il est tout à fait possible de trouver des données financières pour lesquelles la vraisemblance des processus de Hawkes est plus grande si le temps s’écoule en sens inverse. Les processus de Hawkes multivariés avec noyaux d’influence asymétriques ne sont pas affectés par une faible causalité. Il est malheureusement difficile de les calibrer aux actions individuelles des investisseurs présents dans nos bases de données, pour deux raisons. Nous avons soigneusement vérifie que l’activité des investisseurs est hautement non-stationaire et qu’on ne peut pas supposer que leur activité est localement stationaire, faute de données en nombre suffisant, bien que nos bases de données contiennent chacune plus de 1 million de transactions. Ces problèmes sont renforcés par le fait que les noyaux dans les processus de Hawkes codent l’influence mutuelle des investisseurs pour toutes les échelles de temps simultanément. Afin de pallier ce problème, la deuxième partie de cette thèse se concentre sur la causalité entre des échelles de temps spécifiques. Un filtrage supplémentaire est obtenu en réduisant le nombre effectif d’investisseurs grâce aux Réseaux Statistiquement Validés. Ces derniers sont utilisés pour catégoriser les investisseurs, qui sont groupés selon leur degré de la synchronisation de leurs actions (achat, vente, neutre) dans des intervalles déterminés à une échelle temporelle donnée. Cette partie propose une méthode pour l’inférence de réseaux de meneurs et suiveurs déterminés à une échelle de temps donnée dans le passé et à une autre dans le futur. Trois variations de cette méthode sont étudiées. Cette méthode permet de caractériser la causalité d’une façon novatrice. Nous avons comparé l’asymétrie temporelle des actions des investisseurs et celle de la volatilité des prix, et conclure que la structure de causalité des investisseurs est considérablement plus complexe que celle de la volatilité. De façon attendue, les investisseurs institutionnels, dont l’impact sur l’évolution des prix est beaucoup plus grand que celui des clients privés, ont une structure causale proche de celle de la volatilité: en effet, la volatilité, étant une quantité macroscopique, est le résultat d’une aggrégation des comportements de tous les investisseurs, qui fait disparaître la structure causale des investisseurs privés. / This thesis aims to uncover the underlyingcausality structure of financial markets by focusing onthe inference of investor causal networks at multipletimescales in two trader-resolved datasets.The first part of this thesis is devoted to the causal strengthof Hawkes processes. These processes describe in a clearlycausal way how the activity rate of e.g. an investor dependson his past activity rate; its multivariate version alsomakes it possible to include the interactions between theagents, at all time scales. The main result of this part isthat the classical MLE estimation of the process parametersdoes not vary significantly if the arrow of time is reversedin the univariate and symmetric multivariate case.This means that blindly trusting univariate and symmetricmultivariate Hawkes processes to infer causality from datais problematic. In addition, we find a dependency betweenthe level of causality in the process and its endogeneity.For long time series of synthetic data, one can discriminatebetween the forward and backward arrows of time byperforming rigorous statistical tests on the processes, butfor empirical data the situation is much more ambiguous,as it is entirely possible to find a better Hawkes process fitwhen time runs backwards compared to forwards.Asymmetric Hawkes processes do not suffer from veryweak causality. Fitting them to the individual traders’ actionsfound in our datasets is unfortunately not very successfulfor two reasons. We carefully checked that tradersactions in both datasets are highly non-stationary, andthat local stationarity cannot be assumed to hold as thereis simply not enough data, even if each dataset containsabout one million trades. This is also compounded by thefact that Hawkes processes encode the pairwise influenceof traders for all timescales simultaneously.In order to alleviate this problem, the second part ofthis thesis focuses on causality between specific pairs oftimescales. Further filtering is achieved by reducing theeffective number of investors; Statistically Validated Networksare applied to cluster investors into groups basedon the statistically high synchronisation of their actions(buy, sell or neutral) in time intervals of a given timescale.This part then generalizes single-timescale lead-lag SVNsto lead-lag networks between two timescales and introducesthree slightly different methodsThese methods make it possible to characterize causalityin a novel way. We are able to compare the time reversalasymmetry of trader activity and that of price volatility,and conclude that the causal structure of trader activity isconsiderably more complex than that of the volatility for agiven category of traders. Expectedly, institutional traders,whose impact on prices is much larger than that of retailclients, have a causality structure that is closer to that ofvolatility. This is because volatility, being a macroscopicquantity, aggregates the behaviour of all types of traders,thereby hiding the causality structure of minor players.
22

Propojenost vysokofrekvenčních dat / Connectedness of high-frequency data

Petras, Petr January 2016 (has links)
This work combines discrete and continuous methods while modeling connect- edness of financial tick data. As discrete method we are using vector autore- gression. For continuous domain Hawkes process is used, which is special case of point process. We found out that financial assets are connected in non- symmetrical fashion. By using two methodologies we were able to model bet- ter how are the series connected. We confirmed existence of price leader in our three stock portfolio and modeled connectedness of jumps between stocks. As conclusion we state that both methods yields important results about price nature on the market and should be used together or at least with awareness of second approach. JEL Classification C32, G11, G14 Keywords Vector Autoregression, Hawkes process, High- frequency analysis, Connectedness Author's e-mail petr.petras@email.cz Supervisor's e-mail krehlik@utia.cas.cz
23

Etude empirique, modélisation et applications des trades à limites multiples dans les carnets d'ordre

Pomponio, Fabrizio 14 December 2012 (has links) (PDF)
Cette thèse étudie certains évènements particuliers des carnets d'ordre - les "trades traversants". Dans le premier chapitre, on définit les trades traversants comme étant ceux qui consomment la liquidité présente dans le carnet d'ordres sur plusieurs limites, sans laisser le temps à la meilleure limite de se remplir par l'arrivée de nouveaux ordres limites. On étudie leurs propriétés empiriques en fournissant des statistiques de liquidité, de volume, de distribution de leurs temps d'arrivées, de clustering et de relaxation du spread. Leur impact de marché est supérieur à celui des trades classiques, et ce même à volume comparable : les trades traversants présentent donc un contenu informationnel plus grand. On propose deux applications au problème du lead-lag entre actifs/marchés, d'abord pour répondre à la question de savoir quel actif bouge en premier, et ensuite pour mesurer la force du signal des trades traversants dans le cadre d'une stratégie d'investissement basée sur le lead-lag entre actifs. Le chapitre suivant approfondit l'étude empirique du clustering de l'arrivée des trades traversants. On y modélise leur arrivée par des processus stochastiques auto-excités (les processus de Hawkes). Une étude statistique de la calibration obtenue avec des modèles à noyaux exponentiels pour la décroissance temporelle de l'impact est menée et assure une modélisation satisfaisante avec deux processus indépendants, un pour le bid et un pour l'ask. La classe de modèles proposée à la calibration est bien adaptée puisqu'il n'existe pas d'effet inhibiteur après l'arrivée d'un trade traversant. On utilise ces résultats pour calculer un indicateur d'intensité basé sur l'arrivée des trades traversants, et améliorer ainsi une stratégie d'investissement de type "momentum". Enfin, une calibration non-paramétrique du noyau de décroissance temporel d'impact fournit une décroissance empirique encore plus forte qu'une loi exponentielle, et davantage proche d'une loi-puissance. Le dernier chapitre rappelle une méthode générale de détection statistique de sauts dans des séries temporelles de prix/rendements qui soit robuste au bruit de microstructure. On généralise les résultats empiriques connus à de nouveaux indices financiers. On adapte cette méthode de détection statistique de sauts à des trajectoires intraday afin d'obtenir la distribution de la proportion de sauts détectés au cours de la journée. Les valeurs extrémales et les plus grandes variations de cette proportion se déroulent à des heures précises de la journée (14 :30, 15 :00 et 16 :30, heure de Paris), déjà rencontrées dans l'étude des trades traversants. Grâce à eux, on propose une explication des caractéristiques principales du profil intraday de la proportion de sauts détectés par le test, qui s'appuie sur une modification de la part relative de chacune des composantes de sauts dans la trajectoire des actifs considérés (la composante des mouvements continus et celle liée aux mouvements de sauts purs).
24

Adversarial Attacks and Defense Mechanisms to Improve Robustness of Deep Temporal Point Processes

Khorshidi, Samira 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Temporal point processes (TPP) are mathematical approaches for modeling asynchronous event sequences by considering the temporal dependency of each event on past events and its instantaneous rate. Temporal point processes can model various problems, from earthquake aftershocks, trade orders, gang violence, and reported crime patterns, to network analysis, infectious disease transmissions, and virus spread forecasting. In each of these cases, the entity’s behavior with the corresponding information is noted over time as an asynchronous event sequence, and the analysis is done using temporal point processes, which provides a means to define the generative mechanism of the sequence of events and ultimately predict events and investigate causality. Among point processes, Hawkes process as a stochastic point process is able to model a wide range of contagious and self-exciting patterns. One of Hawkes process’s well-known applications is predicting the evolution of viral processes on networks, which is an important problem in biology, the social sciences, and the study of the Internet. In existing works, mean-field analysis based upon degree distribution is used to predict viral spreading across networks of different types. However, it has been shown that degree distribution alone fails to predict the behavior of viruses on some real-world networks. Recent attempts have been made to use assortativity to address this shortcoming. This thesis illustrates how the evolution of such a viral process is sensitive to the underlying network’s structure. In Chapter 3 , we show that adding assortativity does not fully explain the variance in the spread of viruses for a number of real-world networks. We propose using the graphlet frequency distribution combined with assortativity to explain variations in the evolution of viral processes across networks with identical degree distribution. Using a data-driven approach, by coupling predictive modeling with viral process simulation on real-world networks, we show that simple regression models based on graphlet frequency distribution can explain over 95% of the variance in virality on networks with the same degree distribution but different network topologies. Our results highlight the importance of graphlets and identify a small collection of graphlets that may have the most significant influence over the viral processes on a network. Due to the flexibility and expressiveness of deep learning techniques, several neural network-based approaches have recently shown promise for modeling point process intensities. However, there is a lack of research on the possible adversarial attacks and the robustness of such models regarding adversarial attacks and natural shocks to systems. Furthermore, while neural point processes may outperform simpler parametric models on in-sample tests, how these models perform when encountering adversarial examples or sharp non-stationary trends remains unknown. In Chapter 4 , we propose several white-box and black-box adversarial attacks against deep temporal point processes. Additionally, we investigate the transferability of whitebox adversarial attacks against point processes modeled by deep neural networks, which are considered a more elevated risk. Extensive experiments confirm that neural point processes are vulnerable to adversarial attacks. Such a vulnerability is illustrated both in terms of predictive metrics and the effect of attacks on the underlying point process’s parameters. Expressly, adversarial attacks successfully transform the temporal Hawkes process regime from sub-critical to into a super-critical and manipulate the modeled parameters that is considered a risk against parametric modeling approaches. Additionally, we evaluate the vulnerability and performance of these models in the presence of non-stationary abrupt changes, using the crimes and Covid-19 pandemic dataset as an example. Considering the security vulnerability of deep-learning models, including deep temporal point processes, to adversarial attacks, it is essential to ensure the robustness of the deployed algorithms that is despite the success of deep learning techniques in modeling temporal point processes. In Chapter 5 , we study the robustness of deep temporal point processes against several proposed adversarial attacks from the adversarial defense viewpoint. Specifically, we investigate the effectiveness of adversarial training using universal adversarial samples in improving the robustness of the deep point processes. Additionally, we propose a general point process domain-adopted (GPDA) regularization, which is strictly applicable to temporal point processes, to reduce the effect of adversarial attacks and acquire an empirically robust model. In this approach, unlike other computationally expensive approaches, there is no need for additional back-propagation in the training step, and no further network isrequired. Ultimately, we propose an adversarial detection framework that has been trained in the Generative Adversarial Network (GAN) manner and solely on clean training data. Finally, in Chapter 6 , we discuss implications of the research and future research directions.
25

Hawkes Process Models for Unsupervised Learning on Uncertain Event Data

Haghdan, Maysam January 2017 (has links)
No description available.
26

Spatio-temporal Event Prediction via Deep Point Processes / 深層点過程を用いた時空間イベント予測

Okawa, Maya 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24028号 / 情博第784号 / 新制||情||133(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 鹿島 久嗣, 教授 山本 章博, 教授 吉川 正俊 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
27

Temporal Event Modeling of Social Harm with High Dimensional and Latent Covariates

Liu, Xueying 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The counting process is the fundamental of many real-world problems with event data. Poisson process, used as the background intensity of Hawkes process, is the most commonly used point process. The Hawkes process, a self-exciting point process fits to temporal event data, spatial-temporal event data, and event data with covariates. We study the Hawkes process that fits to heterogeneous drug overdose data via a novel semi-parametric approach. The counting process is also related to survival data based on the fact that they both study the occurrences of events over time. We fit a Cox model to temporal event data with a large corpus that is processed into high dimensional covariates. We study the significant features that influence the intensity of events.
28

A Limit Order Book Model for High Frequency Trading with Rough Volatility

Chen-Shue, Yun S 01 January 2024 (has links) (PDF)
We introduce a financial model for limit order book with two main features: First, the limit orders and market orders for the given asset both appear and interact with each other. Second, the high frequency trading (HFT, for short) activities are allowed and described by the scaling limit of nearly-unstable multi-dimensional Hawkes processes with power law decay. The model eventually becomes a stochastic partial differential equation (SPDE, for short) with the diffusion coefficient determined by a Volterra integral equation governed by a Hawkes process, whose Hurst exponent is less than 1/2, which makes the volatility path of the stochastic PDE rougher than that driven by a Brownian motion. We have further established the well-posedness of such a system so that a foundation is laid down for further studies in this direction.
29

Cluster construction and limit properties of renewal Hawkes processes / 更新ホークス過程のクラスター構造と極限の特徴

Luis, Iv?n Hern?ndez Ruiz 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25091号 / 理博第4998号 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 日野 正訓, 教授 COLLINSBenoit Vincent Pierre, 教授 楠岡 誠一郎 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
30

金融大數據之應用 : Hawkes相互激勵模型於跨市場跳躍傳染現象之實證分析 / Empirical Analysis on Financial Contagion using Hawkes Mutu-ally Exciting Model

簡宇澤, Chien, Yu Tse Unknown Date (has links)
本研究使用美國、德國、英國股票指數期貨之日內交易資料,從報酬率中分離出連續波動度與跳躍項,再以MLE法估計Hawkes相互激勵過程之參數,衡量跨市場跳躍傳染現象。擴展文獻中僅兩市場的分析至三市場模型,更能從整體的角度解釋市場間的關係及跳躍傳染途徑。實證結果顯示,美國能直接影響其他市場,而其他市場反過來不易干涉美國,呈現非對稱影響效果。歐洲兩國能互相傳染,英國對德國的影響較大,也更有能力影響美國,稱英國為歐洲的影響輸出國,德國為歐洲的影響輸入國。

Page generated in 0.0207 seconds