• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 23
  • 18
  • 12
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Quantitative Finance under rough volatility / Finance quantitative sous les modèles à volatilité rugueuse

El Euch, Omar 25 September 2018 (has links)
Cette thèse a pour objectif la compréhension de plusieurs aspects du caractère rugueux de la volatilité observé de manière universelle sur les actifs financiers. Ceci est fait en six étapes. Dans une première partie, on explique cette propriété à partir des comportements typiques des agents sur le marché. Plus précisément, on construit un modèle de prix microscopique basé sur les processus de Hawkes reproduisant les faits stylisés importants de la microstructure des marchés. En étudiant le comportement du prix à long terme, on montre l’émergence d’une version rugueuse du modèle de Heston (appelé modèle rough Heston) avec effet de levier. En utilisant ce lien original entre les processus de Hawkes et les modèles de Heston, on calcule dans la deuxième partie de cette thèse la fonction caractéristique du log-prix du modèle rough Heston. Cette fonction caractéristique est donnée en terme d’une solution d’une équation de Riccati dans le cas du modèle de Heston classique. On montre la validité d’une formule similaire dans le cas du modèle rough Heston, où l’équation de Riccati est remplacée par sa version fractionnaire. Cette formule nous permet de surmonter les difficultés techniques dues au caractère non markovien du modèle afin de valoriser des produits dérivés. Dans la troisième partie, on aborde la question de la gestion des risques des produits dérivés dans le modèle rough Heston. On présente des stratégies de couverture utilisant comme instruments l’actif sous-jacent et la courbe variance forward. Ceci est fait en spécifiant la structure markovienne infini-dimensionnelle du modèle. Étant capable de valoriser et couvrir les produits dérivés dans le modèle rough Heston, nous confrontons ce modèle à la réalité des marchés financiers dans la quatrième partie. Plus précisément, on montre qu’il reproduit le comportement de la volatilité implicite et historique. On montre également qu’il génère l’effet Zumbach qui est une asymétrie par inversion du temps observée empiriquement sur les données financières. On étudie dans la cinquième partie le comportement limite de la volatilité implicite à la monnaie à faible maturité dans le cadre d’un modèle à volatilité stochastique général (incluant le modèle rough Bergomi), en appliquant un développement de la densité du prix de l’actif. Alors que l’approximation basée sur les processus de Hawkes a permis de traiter plusieurs questions relatives au modèle rough Heston, nous examinons dans la sixième partie une approximation markovienne s’appliquant sur une classe plus générale de modèles à volatilité rugueuse. En utilisant cette approximation dans le cas particulier du modèle rough Heston, on obtient une méthode numérique pour résoudre les équations de Riccati fractionnaires. Enfin, nous terminons cette thèse en étudiant un problème non lié à la littérature sur la volatilité rugueuse. Nous considérons le cas d’une plateforme cherchant le meilleur système de make-take fees pour attirer de la liquidité. En utilisant le cadre principal-agent, on décrit le meilleur contrat à proposer au market maker ainsi que les cotations optimales affichées par ce dernier. Nous montrons également que cette politique conduit à une meilleure liquidité et à une baisse des coûts de transaction pour les investisseurs. / The aim of this thesis is to study various aspects of the rough behavior of the volatility observed universally on financial assets. This is done in six steps. In the first part, we investigate how rough volatility can naturally emerge from typical behav- iors of market participants. To do so, we build a microscopic price model based on Hawkes processes in which we encode the main features of the market microstructure. By studying the asymptotic behavior of the price on the long run, we obtain a rough version of the Heston model exhibiting rough volatility and leverage effect. Using this original link between Hawkes processes and the Heston framework, we compute in the second part of the thesis the characteristic function of the log-price in the rough Heston model. In the classical Heston model, the characteristic function is expressed in terms of a solution of a Riccati equation. We show that rough Heston models enjoy a similar formula, the Riccati equation being replaced by its fractional version. This formula enables us to overcome the non-Markovian nature of the model in order to deal with derivatives pricing. In the third part, we tackle the issue of managing derivatives risks under the rough Heston model. We establish explicit hedging strategies using as instruments the underlying asset and the forward variance curve. This is done by specifying the infinite-dimensional Markovian structure of the rough Heston model. Being able to price and hedge derivatives in the rough Heston model, we challenge the model to practice in the fourth part. More precisely, we show the excellent fit of the model to historical and implied volatilities. We also show that the model reproduces the Zumbach’s effect, that is a time reversal asymmetry which is observed empirically on financial data. While the Hawkes approximation enabled us to solve the pricing and hedging issues under the rough Heston model, this approach cannot be extended to an arbitrary rough volatility model. We study in the fifth part the behavior of the at-the-money implied volatility for small maturity under general stochastic volatility models. In the same spirit as the Hawkes approximation, we look in the sixth part of this thesis for a tractable Markovian approximation that holds for a general class of rough volatility models. By applying this approximation on the specific case of the rough Heston model, we derive a numerical scheme for solving fractional Riccati equations. Finally, we end this thesis by studying a problem unrelated to rough volatility. We consider an exchange looking for the best make-take fees system to attract liquidity in its platform. Using a principal-agent framework, we describe the best contract that the exchange should propose to the market maker and provide the optimal quotes displayed by the latter. We also argue that this policy leads to higher quality of liquidity and lower trading costs for investors.
32

Information diffusion and opinion dynamics in social networks / Dissémination de l’information et dynamique des opinions dans les réseaux sociaux

Louzada Pinto, Julio Cesar 14 January 2016 (has links)
La dissémination d'information explore les chemins pris par l'information qui est transmise dans un réseau social, afin de comprendre et modéliser les relations entre les utilisateurs de ce réseau, ce qui permet une meilleur compréhension des relations humaines et leurs dynamique. Même si la priorité de ce travail soit théorique, en envisageant des aspects psychologiques et sociologiques des réseaux sociaux, les modèles de dissémination d'information sont aussi à la base de plusieurs applications concrètes, comme la maximisation d'influence, la prédication de liens, la découverte des noeuds influents, la détection des communautés, la détection des tendances, etc. Cette thèse est donc basée sur ces deux facettes de la dissémination d'information: nous développons d'abord des cadres théoriques mathématiquement solides pour étudier les relations entre les personnes et l'information, et dans un deuxième moment nous créons des outils responsables pour une exploration plus cohérente des liens cachés dans ces relations. Les outils théoriques développés ici sont les modèles de dynamique d'opinions et de dissémination d'information, où nous étudions le flot d'informations des utilisateurs dans les réseaux sociaux, et les outils pratiques développés ici sont un nouveau algorithme de détection de communautés et un nouveau algorithme de détection de tendances dans les réseaux sociaux / Our aim in this Ph. D. thesis is to study the diffusion of information as well as the opinion dynamics of users in social networks. Information diffusion models explore the paths taken by information being transmitted through a social network in order to understand and analyze the relationships between users in such network, leading to a better comprehension of human relations and dynamics. This thesis is based on both sides of information diffusion: first by developing mathematical theories and models to study the relationships between people and information, and in a second time by creating tools to better exploit the hidden patterns in these relationships. The theoretical tools developed in this thesis are opinion dynamics models and information diffusion models, where we study the information flow from users in social networks, and the practical tools developed in this thesis are a novel community detection algorithm and a novel trend detection algorithm. We start by introducing an opinion dynamics model in which agents interact with each other about several distinct opinions/contents. In our framework, agents do not exchange all their opinions with each other, they communicate about randomly chosen opinions at each time. We show, using stochastic approximation algorithms, that under mild assumptions this opinion dynamics algorithm converges as time increases, whose behavior is ruled by how users choose the opinions to broadcast at each time. We develop next a community detection algorithm which is a direct application of this opinion dynamics model: when agents broadcast the content they appreciate the most. Communities are thus formed, where they are defined as groups of users that appreciate mostly the same content. This algorithm, which is distributed by nature, has the remarkable property that the discovered communities can be studied from a solid mathematical standpoint. In addition to the theoretical advantage over heuristic community detection methods, the presented algorithm is able to accommodate weighted networks, parametric and nonparametric versions, with the discovery of overlapping communities a byproduct with no mathematical overhead. In a second part, we define a general framework to model information diffusion in social networks. The proposed framework takes into consideration not only the hidden interactions between users, but as well the interactions between contents and multiple social networks. It also accommodates dynamic networks and various temporal effects of the diffusion. This framework can be combined with topic modeling, for which several estimation techniques are derived, which are based on nonnegative tensor factorization techniques. Together with a dimensionality reduction argument, this techniques discover, in addition, the latent community structure of the users in the social networks. At last, we use one instance of the previous framework to develop a trend detection algorithm designed to find trendy topics in a social network. We take into consideration the interaction between users and topics, we formally define trendiness and derive trend indices for each topic being disseminated in the social network. These indices take into consideration the distance between the real broadcast intensity and the maximum expected broadcast intensity and the social network topology. The proposed trend detection algorithm uses stochastic control techniques in order calculate the trend indices, is fast and aggregates all the information of the broadcasts into a simple one-dimensional process, thus reducing its complexity and the quantity of necessary data to the detection. To the best of our knowledge, this is the first trend detection algorithm that is based solely on the individual performances of topics
33

Modélisation du carnet d’ordres, Applications Market Making / Limit order book modelling, Market Making Applications

Lu, Xiaofei 04 October 2018 (has links)
Cette thèse aborde différents aspects de la modélisation de la microstructure du marché et des problèmes de Market Making, avec un accent particulier du point de vue du praticien. Le carnet d’ordres, au cœur du marché financier, est un système de files d’attente complexe à haute dimension. Nous souhaitons améliorer la connaissance du LOB pour la communauté de la recherche, proposer de nouvelles idées de modélisation et développer des applications pour les Market Makers. Nous remercions en particuler l’équipe Automated Market Making d’avoir fourni la base de données haute-fréquence de très bonne qualité et une grille de calculs puissante, sans laquelle ces recherches n’auraient pas été possible. Le Chapitre 1 présente la motivation de cette recherche et reprend les principaux résultats des différents travaux. Le Chapitre 2 se concentre entièrement sur le LOB et vise à proposer un nouveau modèle qui reproduit mieux certains faits stylisés. A travers cette recherche, non seulement nous confirmons l’influence des flux d’ordres historiques sur l’arrivée de nouveaux, mais un nouveau modèle est également fourni qui réplique beaucoup mieux la dynamique du LOB, notamment la volatilité réalisée en haute et basse fréquence. Dans le Chapitre 3, l’objectif est d’étudier les stratégies de Market Making dans un contexte plus réaliste. Cette recherche contribueà deux aspects : d’une part le nouveau modèle proposé est plus réaliste mais reste simple à appliquer pour la conception de stratégies, d’autre part la stratégie pratique de Market Making est beaucoup améliorée par rapport à une stratégie naive et est prometteuse pour l’application pratique. La prédiction à haute fréquence avec la méthode d’apprentissage profond est étudiée dans le Chapitre 4. De nombreux résultats de la prédiction en 1- étape et en plusieurs étapes ont retrouvé la non-linéarité, stationarité et universalité de la relation entre les indicateurs microstructure et le changement du prix, ainsi que la limitation de cette approche en pratique. / This thesis addresses different aspects around the market microstructure modelling and market making problems, with a special accent from the practitioner’s viewpoint. The limit order book (LOB), at the heart of financial market, is a complex continuous high-dimensional queueing system. We wish to improve the knowledge of LOB for the research community, propose new modelling ideas and develop concrete applications to the interest of Market Makers. We would like to specifically thank the Automated Market Making team for providing a large high frequency database of very high quality as well as a powerful computational grid, without whom these researches would not have been possible. The first chapter introduces the incentive of this research and resumes the main results of the different works. Chapter 2 fully focuses on the LOB and aims to propose a new model that better reproduces some stylized facts. Through this research, not only do we confirm the influence of historical order flows to the arrival of new ones, but a new model is also provided that captures much better the LOB dynamic, notably the realized volatility in high and low frequency. In chapter 3, the objective is to study Market Making strategies in a more realistic context. This research contributes in two aspects : from one hand the newly proposed model is more realistic but still simple enough to be applied for strategy design, on the other hand the practical Market Making strategy is of large improvement compared to the naive one and is promising for practical use. High-frequency prediction with deep learning method is studied in chapter 4. Many results of the 1-step and multi-step prediction have found the non-linearity, stationarity and universality of the relationship between microstructural indicators and price change, as well as the limitation of this approach in practice.
34

Application des processus stochastiques aux enchères en temps réel et à la propagation d'information dans les réseaux sociaux / Application of stochastic processes to real-time bidding and diffusion processes on networks

Lemonnier, Rémi 22 November 2016 (has links)
Dans cette thèse, nous étudions deux applications des processus stochastiques au marketing internet. Le premier chapitre s’intéresse au scoring d’internautes pour les enchères en temps réel. Ce problème consiste à trouver la probabilité qu’un internaute donné réalise une action d’intérêt, appelée conversion, dans les quelques jours suivant l’affichage d’une bannière publicitaire. Nous montrons que les processus de Hawkes constituent une modélisation naturelle de ce phénomène mais que les algorithmes de l’état de l’art ne sont pas applicables à la taille des données typiquement à l’œuvre dans des applications industrielles. Nous développons donc deux nouveaux algorithmes d’inférence non-paramétrique qui sont plusieurs ordres de grandeurs plus rapides que les méthodes précédentes. Nous montrons empiriquement que le premier a de meilleures performances que les compétiteurs de l’état de l’art, et que le second permet une application à des jeux de données encore plus importants sans payer un prix trop important en terme de pouvoir de prédiction. Les algorithmes qui en découlent ont été implémentés avec de très bonnes performances depuis plusieurs années à 1000 mercis, l’agence marketing d’avant-garde étant le partenaire industriel de cette thèse CIFRE, où ils sont devenus un actif important pour la production. Le deuxième chapitre s’intéresse aux processus diffusifs sur les graphes qui constituent un outil important pour modéliser la propagation d’une opération de marketing viral sur les réseaux sociaux. Nous établissons les premières bornes théoriques sur le nombre total de nœuds atteint par une contagion dans le cadre de graphes et dynamiques de diffusion quelconques, et montrons l’existence de deux régimes bien distincts : le régime sous-critique où au maximum $O(sqrt{n})$ nœuds seront infectés, où $n$ est la taille du réseau, et le régime sur-critique ou $O(n)$ nœuds peuvent être infectés. Nous étudions également le comportement par rapport au temps d’observation $T$ et mettons en lumière l’existence de temps critiques en-dessous desquels une diffusion, même sur-critique sur le long terme, se comporte de manière sous-critique. Enfin, nous étendons nos travaux à la percolation et l’épidémiologie, où nous améliorons les résultats existants. / In this thesis, we study two applications of stochastic processes in internet marketing. The first chapter focuses on internet user scoring for real-time bidding. This problem consists in finding the probability for a given user to perform an action of interest, called conversion, in the next few days. We show that Hawkes processes are well suited for modelizing this phenomena but that state-of-the-art algorithms are not applicable to the size of datasets involved. We therefore develop two new algorithms able to perform nonparametric multivariate Hawkes process inference orders of magnitude faster than previous methods. We show empirically that the first one outperforms state-of-the-art competitors, and the second one scales to very large datasets while keeping very high prediction power. The resulting algorithms have been implemented with very good performances for several years in 1000mercis, a pioneering marketing agency being the industrial partner of this CIFRE PhD, where they became an important business asset. The second chapter focuses on diffusion processes graphs, an important tool for modelizing the spread of a viral marketing operation over social networks. We derive the first theoretical bounds for the total number of nodes reached by a contagion for general graphs and diffusion dynamics, and show the existence of two well distinct regimes: the sub-critical one where at most $O(sqrt{n})$ nodes are infected, where $n$ is the size of the network, and the super-critical one where $O(n)$ nodes can be infected. We also study the behavior wrt to the observation time $T$ and reveals the existence of critical times under which a long-term super-critical diffusion process behaves sub-critically. Finally, we extend our works to different application fields, and improve state-of-the-art results in percolation and epidemiology.
35

Propriétés empiriques et modélisation d'actifs en haute fréquence

Zaatour, Riadh 10 March 2014 (has links) (PDF)
Cette thèse explore théoriquement et empiriquement certains aspects de la formation et de l'évolution des prix des actifs financiers observés en haute fréquence. Nous commençons par l'étude de la dynamique jointe de l'option et de son sous-jacent. Les données haute fréquence rendant observable le processus de volatilité réalisée du sous-jacent, nous cherchons à savoir si cette information est utilisée pour fixer les prix des options. Nous trouvons que le marché ne l'exploite pas. Les modèles de volatilité stochastique sont donc à considérer comme des modèles à forme réduite. Cette étude permet néanmoins de tester la pertinence d'une mesure de couverture empirique que nous appelons delta effectif. C'est la pente de la régression des rendements des prix de l'option sur ceux du sous-jacent. Elle fournit un indicateur de couverture assez satisfaisant et indépendant de toute modélisation. Pour la dynamique des prix, nous nous tournons dans les chapitres suivants vers des modèles plus explicites de la microstructure du marché. L'une des caractéristiques de l'activité de marché est son regroupement, ou clustering. Les processus de Hawkes, processus ponctuels présentant cette caractéristique, fournissent donc un cadre mathématique adéquat pour l'étude de cette activité. La représentation Markovienne de ces processus, ainsi que leur caractère affine quand le noyau est exponentiel, permettent de recourir aux puissants outils analytiques que sont le générateur infinitésimal et la formule de Dynkin pour calculer différentes quantités qui leur sont reliées, telles que les moments ou autocovariances du nombre d'évènements sur un intervalle donné. Nous commençons par un cadre monodimensionnel, assez simple pour éclairer la démarche, mais suffisamment riche pour permettre des applications telles que le groupement des instants d'arrivée d'ordres de marché, la prévision de l'activité de marché à venir sachant l'activité passée, ou la caractérisation de formes inhabituelles, mais néanmoins observées, de signature plot où la volatilité mesurée décroît quand la fréquence d'échantillonnage augmente. Nos calculs nous permettent aussi de rendre la calibration des processus de Hawkes instantanée en recourant à la méthode des moments. La généralisation au cas multidimensionnel nous permet ensuite de capturer, avec le clustering, le phénomène de retour à la moyenne qui caractérise aussi l'activité de marché observée en haute fréquence. Des formules générales pour le signature plot sont alors obtenues et permettent de relier la forme de celui-ci à l'importance relative du clustering ou du retour à la moyenne. Nos calculs permettent aussi d'obtenir la forme explicite de la volatilité associée à la limite diffusive, connectant la dynamique de niveau microscopique à la volatilité observée macroscopiquement, par exemple à l'échelle journalière. En outre, la modélisation des activités d'achat et de vente par des processus de Hawkes permet de calculer l'impact d'un méta ordre sur le prix de l'actif. On retrouve et on explique alors la forme concave de cet impact ainsi que sa relaxation temporelle. Les résultats analytiques obtenus dans le cas multidimensionnel fournissent ensuite le cadre adéquat à l'étude de la corrélation. On présente alors des résultats généraux sur l'effet Epps, ainsi que sur la formation de la corrélation et du lead lag.
36

Investigations on growth and P uptake characteristics of maize and sweet corn as influenced by soil P status : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph. D.) (Plant & soil science), Institute of Natural Resources, Massey University, Palmerston North, New Zealand

Aslam, Tehseen January 2005 (has links)
Despite being different cultivars of the same plant species (Zea mays L.), maize and sweet corn have contrasting P fertiliser recommendations in New Zealand, that are reflected in different target Olsen P values of 10-15 mg P/kg soil for optimum maize growth and 26-35 mg P/kg soil for optimum sweet corn growth. Three key hypotheses were developed in this study to explain why these differences may exist: i) maize and sweet corn differ in their responsiveness to P fertiliser i.e. maize is more internally P efficient and requires less P than sweet corn to grow, ii) both cultivars differ in external P efficiency i.e. their ability to take P up from soil iii) both cultivars differ in external P efficiency because they have different root system structure. Two field experiments evaluated the growth and yield responses of maize and sweet to different rates of P fertiliser application. The first experiment was conducted in Hawke's Bay (2001-02) and second in the Manawatu (2002-03) with P application rates of 0, 100 and 200 kg P/ha in the Hawke's Bay and 0, 15 and 70 kg P/ha in the Manawatu. Both experiments were conducted on soils of low available P status. The Olsen P test values of 13 mg P/kg soil in the Hawke's Bay and 11 mg P/kg soil in the Manawatu were far below the recommended values for sweet corn (25-35 mg P/kg soil). In both experiments and across all P treatments maize produced significantly higher dry matter yields than sweet corn during all sampling stages. In the Hawke's Bay experiment at 100 days after sowing (DAS), the maize (87719 plants/ha, 20.9 t/ha) produced 43% more dry matter than sweet corn (71124 plants/ha, 14.6 t/ha), whereas, in the Manawatu experiment (140 DAS), maize (71124 plants/ha, 15.2 t/ha) had a 39% higher dry matter yield than sweet corn (71124 plants/ha, 10.9 t/ha). In both the field experiments, the sweet corn fresh cob yield of 27 and 28 t/ha in the Hawke's Bay and the Manawatu regions and maize grain yields of 16 and 10 t/ha, respectively, were within the range of the reported commercial yields for each region. In both experiments, the P fertiliser application raised the soil P status (Olsen P test values) but caused no significant increases in either maize or sweet corn yields (total dry matter, sweet corn fresh cob or maize grain). Commercially viable yields of both cultivars were able to be achieved without P fertiliser application with Olsen P soil test in the range of 10-15 mg P/kg soil. Sweet corn reached harvestable maturity at 115 DAS in the Hawke's Bay and 140 DAS in the Manawatu experiments. By this time maize had produced 4-6 t/ha more total dry matter yield than sweet corn, yet maize and sweet corn had achieved similar total P uptake (32-37 kg P/ha at 100 DAS in the Hawke's Bay and 18-19 kg P/ha at 140 DAS in the Manawatu). At silking (after 75 DAS in the Hawke's Bay and approximately 110 DAS in the Manawatu), both cultivar's total leaf P concentrations (0.21-0.25%) were within the sufficiency range values for maize crops in New Zealand (0.18-0.33 %). Maize, however was more internally P efficient growing more dry matter per unit P taken up, which was more noticeable in the drier season. Fertiliser P application increased P uptake with both cultivars under moist conditions in the Hawke's Bay experiment (2001-02). However, the dry conditions in the Manawatu (2002-03) limited P uptake as well as restricted dry matter yields with both cultivars. Further, there were no significant differences between maize and sweet corn P uptake efficiency (kg P/kg root) despite significant differences in the root system structure (biomass) for both cultivars at all stages, which lead to different temporal patterns of P uptake. The lack of maize yield response to fertiliser P in both field experiments is consistent with the New Zealand recommendations for growing a maize grain crop (because soil Olsen P was in the range of 10-15 mg P/kg). However, the lack of sweet corn yield response in both field experiments does not support the New Zealand recommendations for growing sweet corn (which assume optimal Olsen P values are 26-35 mg P/kg).
37

Solving Prediction Problems from Temporal Event Data on Networks

Sha, Hao 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Many complex processes can be viewed as sequential events on a network. In this thesis, we study the interplay between a network and the event sequences on it. We first focus on predicting events on a known network. Examples of such include: modeling retweet cascades, forecasting earthquakes, and tracing the source of a pandemic. In specific, given the network structure, we solve two types of problems - (1) forecasting future events based on the historical events, and (2) identifying the initial event(s) based on some later observations of the dynamics. The inverse problem of inferring the unknown network topology or links, based on the events, is also of great important. Examples along this line include: constructing influence networks among Twitter users from their tweets, soliciting new members to join an event based on their participation history, and recommending positions for job seekers according to their work experience. Following this direction, we study two types of problems - (1) recovering influence networks, and (2) predicting links between a node and a group of nodes, from event sequences.
38

Implementation and evaluation of the Heston-Queue-Hawkes option pricing model

Rosén, Samuel January 2023 (has links)
Introduction: This thesis presents a python implementation and evaluation of the Heston-Queue-Hawkes (HQH) model, a recent jump-diffusion model for pricing options. The model is capable of tracking options for a wide range of different underlying assets. The model is expected to perform better on Fourier-based fast pricing algorithms such as the COS Method, however in this thesis we’ll only look at Monte Carlo solvers for the HQH model. The type of option studied in this master’s thesis is European options, however, the implementation could be extended to other types of options.  Methodology: The methodology for evaluating the HQH model (in this paper) involves the use of a custom Monte Carlo simulation implemented in Python. The Monte Carlo method enables simulating multiple scenarios and provides reliable results across a variety of situations, making it an appropriate tool for evaluating the model's performance.  Evaluation: The HQH model is evaluated on ease of implementation in python and it’s general ability to reflect different market phenomena such as volatility in price movements.  Improvement: This thesis also investigates the possibility of improving the model or adding corrections, parameters, readjustments, or the like to the model to improve results. The aim is to enhance the model's usefulness, and this evaluation seeks to identify potential improvements.  Worth noting: The goal of this thesis is to align with the research interests of financial institutions and provide a practical, applied approach to evaluating options pricing models. The research presented in this thesis aims to mirror the type of projects that a company like Visigon may be requested to undertake by a bank (and engineering work in general). Additionally, the findings and methodology developed in this thesis aims to inform and contribute to future research in options pricing models which may help markets perform better.
39

On Predicting Price Volatility from Limit Order Books

Dadfar, Reza January 2023 (has links)
Accurate forecasting of stock price movements is crucial for optimizing trade execution and mitigating risk in automated trading environments, especially when leveraging Limit Order Book (LOB) data. However, developing predictive models from LOB data presents substantial challenges due to its inherent complexities and high-frequency nature. In this thesis, the application of the General Compound Hawkes Process (GCHP) is explored to predict price volatility. Within this framework, a Hawkes process is employed to estimate the times of price changes, and a Markovian model is utilized to determine their amplitudes. The price volatility is obtained through both numerical and analytical methodologies. The performance of the GCHP is assessed on a publicly available dataset, including five distinct stocks. To enhance accuracy, the number of states in the Markov chain is gradually increased, and the advantages of incorporating a higher-order Markov chain for refined volatility estimation are demonstrated.
40

Community Hawkes Models for Continuous-time Networks

Soliman, Hadeel 15 September 2022 (has links)
No description available.

Page generated in 0.0375 seconds