• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of New Test Methods for Fire Fighting Clothing

Gagnon, Brian D. 18 April 2000 (has links)
Despite advancements in the development of synthetic fibers and materials that provide better insulation, fire ground burn injuries remain a significant issue. The current test methods for fire fighting clothing were investigated to determine their adequacy in evaluating the actual performance of clothing materials. This investigation uncovered several potential problems with the current test methods. A series of new, small scale, tests were used to evaluate the shortcomings of the current test methods and develop possible improvements. A small test apparatus, designed and donated by Ktech Corporation, was used to measure the thermal properties (thermal conductivity and volumetric heat capacity) of a series of fire fighting clothing materials. The thermal properties were estimated for single fabric layers, as well as ensembles, with various levels of moisture added to simulate actual end use conditions. In addition, a skin simulant sensor was used to assess the time to 2nd degree burn for exposures similar to those required in current standards for fire fighting clothing. A one dimensional heat conduction model was developed to predict the time to 2nd degree burn for the skin simulant sensor protected with outer shell materials that may be used as wildland fire fighting clothing, using the thermal property data obtained from earlier tests. An alternative method was developed to calculate the time to 2nd degree burn for ensembles evaluated with the new skin simulant sensor. The predictions for the time to 2nd degree burn obtained from the new skin simulant sensor were compared against results obtained using the sensor specified in the current test methods. The predictions for the skin simulant sensor were consistently shorter than those from the current test sensor. The current test sensor predictions for the time to 2nd degree burn were nominally 40% to 50% higher than the predictions from the skin simulant sensor during the evaluations of outer shell materials.
2

3D Thermal Mapping of Cone Calorimeter Specimen and Development of a Heat Flux Mapping Procedure Utilizing an Infrared Camera

Choi, Keum-Ran 02 February 2005 (has links)
The Cone Calorimeter has been used widely for various purposes as a bench - scale apparatus. Originally the retainer frame (edge frame) was designed to reduce unrepresentative edge burning of specimens. In general, the frame has been used in most Cone tests without enough understanding of its effect. It is very important to have one - dimensional (1D) conditions in order to estimate thermal properties of materials. It has been implicitly assumed that the heat conduction in the Cone Calorimeter is 1D using the current specimen preparation. However, the assumption has not been corroborated explicitly to date. The first objective of this study was to evaluate the heat transfer behavior of a Cone specimen by examining its three - dimensional (3D) heat conduction. It is essential to understand the role of wall lining materials when they are exposed to a fire from an ignition source. Full - scale test methods permit an assessment of the performance of a wall lining material. Fire growth models have been developed due to the costly expense associated with full - scale testing. The models require heat flux maps from the ignition burner flame as input data. Work to date was impeded by a lack of detailed spatial characterization of the heat flux maps due to the use of limited instrumentation. To increase the power of fire modeling, accurate and detailed heat flux maps from the ignition burner are essential. High level spatial resolution for surface temperature can be provided from an infrared camera. The second objective of this study was to develop a heat flux mapping procedure for a room test burner flame to a wall configuration with surface temperature information taken from an infrared camera. A prototype experiment is performed using the ISO 9705 test burner to demonstrate the developed heat flux mapping procedure. The results of the experiment allow the heat flux and spatial resolutions of the method to be determined and compared to the methods currently available.

Page generated in 0.1022 seconds