• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A theoretical study and simulation of the diesel-absorption unit

Talbi, Mosbah Mohamed January 2000 (has links)
No description available.
2

Controller design methodology for sustainable local energy systems

Al-Khaykan, Ameer January 2018 (has links)
Commercial Buildings and complexes are no longer just national heat and power network energy loads, but they are becoming part of a smarter grid by including their own dedicated local heat and power generation. They do this by utilising both heat and power networks/micro-grids. A building integrated approach of Combined Heat and Power (CHP) generation with photovoltaic power generation (PV) abbreviated as CHPV is emerging as a complementary energy supply solution to conventional (i.e. national grid based) gas and electricity grid supplies in the design of sustainable commercial buildings and communities. The merits for the building user/owner of this approach are: to reduce life time energy running costs; reduce carbon emissions to contribute to UK’s 2020/2030 climate change targets; and provide a more flexible and controllable local energy system to act as a dynamic supply and/or load to the central grid infrastructure. The energy efficiency and carbon dioxide (CO2) reductions achievable by CHP systems are well documented. The merits claimed by these solutions are predicated on the ability of these systems being able to satisfy: perfect matching of heat and power supply and demand; ability at all times to maintain high quality power supply; and to be able to operate with these constraints in a highly dynamic and unpredictable heat and power demand situation. Any circumstance resulting in failure to guarantee power quality or matching of supply and demand will result in a degradation of the achievable energy efficiency and CO2 reduction. CHP based local energy systems cannot rely on large scale diversity of demand to create a relatively easy approach to supply and demand matching (i.e. as in the case of large centralised power grid infrastructures). The diversity of demand in a local energy system is both much greater than the centralised system and is also specific to the local system. It is therefore essential that these systems have robust and high performance control systems to ensure supply and demand matching and high power quality can be achieved at all times. Ideally this same control system should be able to make best use of local energy system energy storage to enable it to be used as a flexible, highly responsive energy supply and/or demand for the centralised infrastructure. In this thesis, a comprehensive literature survey has identified that there is no scientific and rigorous method to assess the controllability or the design of control systems for these local energy systems. Thus, the main challenge of the work described in this thesis is that of a controller design method and modelling approach for CHP based local energy systems. Specifically, the main research challenge for the controller design and modelling methodology was to provide an accurate and stable system performance to deliver a reliable tracking of power drawn/supplied to the centralised infrastructure whilst tracking the require thermal comfort in the local energy systems buildings. In the thesis, the CHPV system has been used as a case study. A CHPV based solution provides all the benefits of CHP combined with the near zero carbon building/local network integrated PV power generation. CHPV needs to be designed to provide energy for the local buildings’ heating, dynamic ventilating system and air-conditioning (HVAC) facilities as well as all electrical power demands. The thesis also presents in addition to the controller design and modelling methodology a novel CHPV system design topology for robust, reliable and high-performance control of building temperatures and energy supply from the local energy system. The advanced control system solution aims to achieve desired building temperatures using thermostatic control whilst simultaneously tracking a specified national grid power demand profile. The theory is innovative as it provides a stability criterion as well as guarantees to track a specified dynamic grid connection demand profile. This research also presents: design a dynamic MATLAB simulation model for a 5-building zone commercial building to show the efficacy of the novel control strategy in terms of: delivering accurate thermal comfort and power supply; reducing the amount of CO2 emissions by the entire energy system; reducing running costs verses national rid/conventional approaches. The model was developed by inspecting the functional needs of 3 local energy system case studies which are also described in the thesis. The CHPV system is combined with supplementary gas boiler for additional heating to guarantee simultaneous tracking of all the zones thermal comfort requirements whilst simultaneously tracking a specified national grid power demand using a Photovoltaics array to supply the system with renewable energy to reduce amount of CO2 emission. The local energy system in this research can operate in any of three modes (Exporting, Importing, Island). The emphasise of the thesis modelling method has been verified to be applicable to a wide range of case studies described in the thesis chapter 3. This modelling framework is the platform for creating a generic controlled design methodology that can be applied to all these case studies and beyond, including Local Energy System (LES) in hotter climates that require a cooling network using absorption chillers. In the thesis in chapter 4 this controller design methodology using the modelling framework is applied to just one case study of Copperas Hill. Local energy systems face two types of challenges: technical and nontechnical (such as energy economics and legislation). This thesis concentrates solely on the main technical challenges of a local energy system that has been identified as a gap in knowledge in the literature survey. The gap identified is the need for a controller design methodology to allow high performance and safe integration of the local energy system with the national grid infrastructure and locally installed renewables. This integration requires the system to be able to operate at high performance and safely in all different modes of operation and manage effectively the multi-vector energy supply system (e.g. simultaneous supply of heat and power from a single system).
3

Brenngase aus Biomasse für die Wärme- und Stromerzeugung

Zschunke, Thomas, Polster, Andreas, Klöden, Wolfgang, Böhning, Dorith, Klemm, Marco 17 January 2008 (has links) (PDF)
Die energetische Nutzung von Biomasse ist ein wichtiger Beitrag zur Reduktion der CO2- Emissionen. Wärmeerzeugung und gekoppelte Wärme- und Stromerzeugung sind dafür die effektivsten Technologien. Dabei spielt die Erzeugung und Nutzung von Brenngasen aus Biomasse eine große Rolle. Die inzwischen weit verbreitete biologische Gaserzeugung produziert sogenanntes Biogas. Die Forschung konzentriert sich hierbei derzeit unter anderem auf Grundlagen für die Optimierung der Betriebsführung. Aber auch mit thermochemischen Verfahren („Vergasung“) wird Brenngas erzeugt. Einer der Forschungsschwerpunkte dabei ist die angemessene Reinigung des Gases von Teeren und Stäuben. Die Brenngase können dann in herkömmlichen, wenn auch angepassten Verbrennungsmotoren im Zusammenhang mit Generatoren zur Stromerzeugung genutzt werden oder nach einem weiteren Umwandlungsschritt als Erdgasersatz Verwendung finden. / The utilisation of biomass as an energy supply is an important contribution to the reduction of greenhouse emissions. Heat supplies and combined heat and power generation are the most effective technologies from an energetic point of view. In most cases, conversion of solid biomass to a gaseous fuel is an important technological step. Gas generation by biological processes (“biogas”) has been increasing rapidly in recent times. Research in this field is concentrated on improving and automating process operation. Gaseous fuel from biomass can also be generated by thermochemical processes (“gasification”). Research is here focussed on the cleaning of tars and dusts from the gas, for example. The gaseous fuels can then be used in adapted internal combustion engines in combination with electricity generators.
4

Brenngase aus Biomasse für die Wärme- und Stromerzeugung

Zschunke, Thomas, Polster, Andreas, Klöden, Wolfgang, Böhning, Dorith, Klemm, Marco 17 January 2008 (has links)
Die energetische Nutzung von Biomasse ist ein wichtiger Beitrag zur Reduktion der CO2- Emissionen. Wärmeerzeugung und gekoppelte Wärme- und Stromerzeugung sind dafür die effektivsten Technologien. Dabei spielt die Erzeugung und Nutzung von Brenngasen aus Biomasse eine große Rolle. Die inzwischen weit verbreitete biologische Gaserzeugung produziert sogenanntes Biogas. Die Forschung konzentriert sich hierbei derzeit unter anderem auf Grundlagen für die Optimierung der Betriebsführung. Aber auch mit thermochemischen Verfahren („Vergasung“) wird Brenngas erzeugt. Einer der Forschungsschwerpunkte dabei ist die angemessene Reinigung des Gases von Teeren und Stäuben. Die Brenngase können dann in herkömmlichen, wenn auch angepassten Verbrennungsmotoren im Zusammenhang mit Generatoren zur Stromerzeugung genutzt werden oder nach einem weiteren Umwandlungsschritt als Erdgasersatz Verwendung finden. / The utilisation of biomass as an energy supply is an important contribution to the reduction of greenhouse emissions. Heat supplies and combined heat and power generation are the most effective technologies from an energetic point of view. In most cases, conversion of solid biomass to a gaseous fuel is an important technological step. Gas generation by biological processes (“biogas”) has been increasing rapidly in recent times. Research in this field is concentrated on improving and automating process operation. Gaseous fuel from biomass can also be generated by thermochemical processes (“gasification”). Research is here focussed on the cleaning of tars and dusts from the gas, for example. The gaseous fuels can then be used in adapted internal combustion engines in combination with electricity generators.
5

Techno-economic analysis of a waste-to-energy system using innovative pyrolysis process

Perrens, Hannah Sofie January 2023 (has links)
Waste management is of growing concern with increasing amount of municipal waste generation and the industry standards are becoming stricter due to climate goals and sustainable development. Waste-to-energy (WTE) systems in the form of waste incineration have been promoted as a low-carbon energy source, but nevertheless have high greenhouse gas (GHG) emissions. Pyrolysis offers an alternative way of utilizing energy which at high temperatures and in the absence of oxygen thermally decomposes material and yields products such as synthetic gas and biochar. Bodø Storstue, a development project for a new sports arena in Northern Norway, has high ambitions for sustainable development. WTE by pyrolysis has been identified as a potential step toward reducing GHG emissions. Thus, this thesis looked into the technical and economic aspects of integrating pyrolysis as a decentralized WTE system. A simulation model was built in Aspen Plus, which shows the energy and mass balance through the different modules in the system. An economic analysis was performed using MS Excel which included the levelized cost of electricity and net present value calculation. The results suggest that the electricity demand in Bodø Storstue can be met by using pyrolysis for power generation, and that carbon can be stored in biochar which reduces the emissions compared to traditional waste incineration. Future studies should include a simulation model based on tested feedstock composition which would make the simulation more representative of true conditions. The price of biochar should also be included in the economic analysis to obtain more precise conclusions about the economic conditions that impact investment decisions. / Avfallshanteringen skapar en växande oro världen över med ökande avfallsmängder och strängare bestämmelser för industrianpassning till nya klimatmål och nya strategier för hållbar utveckling. Energiutvinningssystem ur avfall i form av direkt avfallsförbränning, s.k. waste-to-energy (WTE), har marknadsförts som en miljövänlig energikälla men låga utsläpp, men har trots detta en viss del fossilbaserad kolinnehåll samt höga helhetsutsläpp av växthusgaser. Pyrolysprocesser erbjuder ett alternativt sätt att utnyttja energi genom att termiskt bryta kolväten vid höga temperaturer och i frånvaro av syre ner till enklare molekyler och således generera gasformiga produkter samt biokol. Bodø Storstue är ett utvecklingsprojekt för att bygga en ny multifunktionell idrottsarena i norra Norge, med höga ambitioner för integrerat miljötänkande. WTE genom pyrolys har identifierats som en lovande åtgärd för att minska växthusgasutsläppen från arenan. Målet härmed är således att undersöka de tekniska och ekonomiska förutsättningarna for att integrera en nyutvecklad pyrolysprocess för arenan i form av ett decentraliserat kraftvärmeverk med lokal avfallshantering där också en del biokol utvinns i fast form för att potentiellt lagras som ren kol eller för att användas till jordförbättring. Simuleringsmodeller för kraftvärmesystemet byggdes i AspenPlusTM baserade på avfallspyrolys och syntesgasförbränning, som beräknar energi- och massbalanser genom olika delmoduler. I ett nästa skede utfördes förenklade ekonomiska analyser med andra verktyg för att sammanfatta elkostnader och nettonuvärdeuträkning. Resultaten tyder på att elbehovet i Bodø Storstue kan tillgodoses genom att använda avfallspyrolys för kraft- och värmegenerering, och att kol kan lagras i form av biokol vilket minskar utsläppen jämfört med traditionell avfallsförbränning. Framtida studier bör inkludera en simuleringsmodell baserad på testad och verklighetstrogen avfallssammansättning, vilket skulle göra simuleringen mer representativ för verkliga förhållanden på arenan. Värdet på biokol bör också inkluderas i den ekonomiska analysen för att få mer precisa slutsatser om de ekonomiska förutsättningarna.

Page generated in 0.1708 seconds