1 |
Magnetization Dynamics at Elevated TemperaturesXu, Lei January 2013 (has links)
The area of ultrafast (sub-nanosecond) magnetization dynamics of ferromagnetic elements and thin films, usually driven by a strong femtosecond laser pulse, has experienced intense research interest. In this dissertation, laser-induced demagnetization is theoretically studied by taking into account interactions among electrons, spins, and lattice. We propose a microscopic approach under the three temperature framework and derive the equations that govern the demagnetization at arbitrary temperatures.To address the question of magnetization reversal at high temperatures, the conventional Landau-Lifshitz equation is obviously unsatisfactory, since it fails to describe the longitudinal relaxation. So by using the equation of motion for the quantum density matrix within the instantaneous local relaxation time approximation, we propose an effective equation that is capable of addressing magnetization dynamics for a wide range of temperatures. The longitudinal and transverse relaxations are analyzed, magnetization reversal processes near Curie temperatures is also studied. Furthermore, we compared our derived Self-consistent Bloch equation and Landau-Lifshitz-Bloch equation in detail. Finally, the demagnetzation dynamics for ferromagnetic and ferrimagnetic alloys is studied by solving the Self-consistent Bloch equation.
|
2 |
Continuum and molecular dynamics analyses of lubricant evaporation and flow due to laser heating in heat-assisted magnetic recordingHaq, Mohammad Ashraful 14 September 2018 (has links)
No description available.
|
3 |
Applications of plasmonics in two dimensional materials & thin filmsPrabhu Kumar Venuthurumilli (10203191) 01 March 2021 (has links)
<p>The demand for
the faster information transport and better computational abilities is ever
increasing. In the last few decades, the electronic industry has met this
requirement by increasing the number of transistors per square inch. This lead
to the scaling of devices to tens of nm. However, the speed of the electronics
is limited to few GHz. Using light, the operating speed of photonic devices can
be much larger than GHz. But the photonic devices are diffraction limited and
hence the size of photonic device is much larger than the electronic
components. Plasmonics is an emerging field with light-induced surface
excitations, and can manipulate the light at nanoscale. It can bridge the gap
between electronics and photonics. </p>
<p>With the present scaling of devices to few
nm, the scientific community is looking for alternatives for continued progress.
This has opened up several promising routes recently, including two-dimensional
materials, quantum computing, topological computing, spintronics and
valleytronics. The discovery of graphene has led to the immense interest in the
field of two-dimensional materials. Two dimensional-materials have
extraordinary properties compared to its bulk. This work discusses the
applications of plasmonics in this emerging field of two-dimensional materials
and for heat assisted magnetic recording.</p>
<p>Black phosphorus is an emerging low-direct
bandgap two-dimensional semiconductor, with anisotropic optical and electronic
properties. It has high mobility and is promising for photo detection at
infrared wavelengths due to its low band gap. We demonstrate two different
plasmonic designs to enhance the photo responsivity of black phosphours by
localized surface plasmons. We use bowtie antenna and bowtie apertures to
increase the absorption and polarization selectivity respectively. Plasmonic
structures are designed by numerical electromagnetic simulations, and are
fabricated to experimentally demonstrate the enhanced photo responsivity of
black phosphorus. </p>
<p>Next, we look at another emerging
two-dimensional material, bismuth telluride selenide (Bi<sub>2</sub>Te<sub>2</sub>Se).
It is a topological insulator with an insulating bulk but conducting electronic
surface states. These surface states are Dirac like, similar to graphene and
can lead to exotic plasmonic phenomena. We investigated the optical properties
of Bi<sub>2</sub>Te<sub>2</sub>Se and found that the bulk is plasmonic below
650 nm wavelength. We study the distinct surface plasmons arising from the bulk
and surface state of the topological insulator, Bi<sub>2</sub>Te<sub>2</sub>Se.
The propagating surface plasmons at a nanoscale slit in Bi<sub>2</sub>Te<sub>2</sub>Se
are imaged using near-field scanning optical microscopy. The surface state
plasmons are studied with a below band gap excitation of 10.6 µm wavelength and the surface
plasmons of the bulk are studied with a visible wavelength of 633 nm. The
surface state plasmon wavelength is 100 times shorter than the incident
wavelength in sharp contrast to the plasmon wavelength of the bulk. </p>
<p>Next, we look at the application of
plasmonics in heat assisted magnetic recording (HAMR). HAMR is one of the next
generation data storage technology that can increase the areal density to
beyond 1 Tb/in<sup>2</sup>. Near-field transducer (NFT) is a key component of
the HAMR system that locally heats the recording medium by concentrating light
below the diffraction limit using surface plasmons. In this work, we use
density-based topology optimization for inverse design of NFT for a desired
temperature profile in the recording medium. We first perform an inverse
thermal calculation to obtain the required volumetric heat generation (electric
field) for a desired temperature profile. Then an inverse electromagnetic
design of NFT is performed for achieving the desired electric field. NFT designs
for both generating a small heated spot size and a heated spot with desired
aspect ratio in recording medium are demonstrated. The effect of waveguide,
write pole and moving recording medium on the heated spot size is also
investigated. </p>
|
4 |
Advanced scanning magnetoresistive microscopy as a multifunctional magnetic characterization method / Weiterentwickelte Rastermagnetowiderstandsmikroskopie als multifunktionale magnetische CharakterisierungsmethodeMitin, Dmitriy 18 May 2017 (has links) (PDF)
Advanced scanning magnetoresistive microscopy (SMRM) — a robust magnetic imaging and probing technique — is presented. It utilizes conventional recording heads of a hard disk drive as sensors. The spatial resolution of modern tunneling magnetoresistive sensors is nowadays comparable with more commonly used magnetic force microscopes. Important advantages of SMRM are the ability to detect pure magnetic signals directly proportional to the out-of-plane magnetic stray field, negligible sensor stray fields, and the ability to apply local bipolar magnetic field pulses up to 10 kOe with bandwidths from DC up to 1 GHz. The performance assessment of this method and corresponding best practices are discussed in the first section of this work.
An application example of SMRM, the study on chemically ordered L10 FePt is presented in a second section. A constructed heater unit of SMRM opens the path to investigate temperature-dependent magnetic properties of the medium by recording and imaging at elevated temperatures. L10 FePt is one of the most promising materials to reach limits in storage density of future magnetic recording devices based on heat-assisted magnetic recording (HAMR). In order to be implemented in an actual recording scheme, the medium Curie temperature should be lowered. This will reduce the power requirements, and hence, wear and tear on a heat source — integrated plasmonic antenna. It is expected that the exchange coupling of FePt to thin Fe layers provides high saturation magnetization and elevated Curie temperature of the composite. The addition of Cu allows adjusting the magnetic properties such as perpendicular magnetic anisotropy, coercivity, saturation magnetization, and Curie temperature. This should lead to a lowering of the switching field of the hard magnetic FeCuPt layer and a reduction of thermally induced recording errors. In this regard, the influence of the Fe layer thickness on the switching behavior of the hard layer was investigated, revealing a strong reduction for Fe layer thicknesses larger than the exchange length of Fe. The recording performance of single-layer and bilayer structures was studied by SMRM roll-off curves and histogram methods at temperatures up to 180 °C
In the last section of this work, SMRM advantages are demonstrated by various experiments on a two-dimensional magnetic vortex lattice. Magnetic vortex is a peculiar complex magnetization configuration which typically appears in a soft magnetic structured materials. It consists of two coupled sub-systems: the core, where magnetization vector points perpendicular to the structure plane, and the curling magnetization where magnetic flux is rotating in-plane. The unique properties of a magnetic vortex making it an object of a great research and technological interest for spintronic applications in sensorics or data storage. Manipulation of the vortex core as well as the rotation sense by applying a local field pulse is shown. A spatially resolved switching map reveals a significant "write window" where vortex cores can be addressed correctly. Moreover, the external in-plane magnet extension unit allow analyzing the magnetic vortex rotational sense which is extremely practical for magnetic coupling investigations of magnetic coupling phenomena.
|
5 |
Advanced scanning magnetoresistive microscopy as a multifunctional magnetic characterization methodMitin, Dmitriy 26 April 2017 (has links)
Advanced scanning magnetoresistive microscopy (SMRM) — a robust magnetic imaging and probing technique — is presented. It utilizes conventional recording heads of a hard disk drive as sensors. The spatial resolution of modern tunneling magnetoresistive sensors is nowadays comparable with more commonly used magnetic force microscopes. Important advantages of SMRM are the ability to detect pure magnetic signals directly proportional to the out-of-plane magnetic stray field, negligible sensor stray fields, and the ability to apply local bipolar magnetic field pulses up to 10 kOe with bandwidths from DC up to 1 GHz. The performance assessment of this method and corresponding best practices are discussed in the first section of this work.
An application example of SMRM, the study on chemically ordered L10 FePt is presented in a second section. A constructed heater unit of SMRM opens the path to investigate temperature-dependent magnetic properties of the medium by recording and imaging at elevated temperatures. L10 FePt is one of the most promising materials to reach limits in storage density of future magnetic recording devices based on heat-assisted magnetic recording (HAMR). In order to be implemented in an actual recording scheme, the medium Curie temperature should be lowered. This will reduce the power requirements, and hence, wear and tear on a heat source — integrated plasmonic antenna. It is expected that the exchange coupling of FePt to thin Fe layers provides high saturation magnetization and elevated Curie temperature of the composite. The addition of Cu allows adjusting the magnetic properties such as perpendicular magnetic anisotropy, coercivity, saturation magnetization, and Curie temperature. This should lead to a lowering of the switching field of the hard magnetic FeCuPt layer and a reduction of thermally induced recording errors. In this regard, the influence of the Fe layer thickness on the switching behavior of the hard layer was investigated, revealing a strong reduction for Fe layer thicknesses larger than the exchange length of Fe. The recording performance of single-layer and bilayer structures was studied by SMRM roll-off curves and histogram methods at temperatures up to 180 °C
In the last section of this work, SMRM advantages are demonstrated by various experiments on a two-dimensional magnetic vortex lattice. Magnetic vortex is a peculiar complex magnetization configuration which typically appears in a soft magnetic structured materials. It consists of two coupled sub-systems: the core, where magnetization vector points perpendicular to the structure plane, and the curling magnetization where magnetic flux is rotating in-plane. The unique properties of a magnetic vortex making it an object of a great research and technological interest for spintronic applications in sensorics or data storage. Manipulation of the vortex core as well as the rotation sense by applying a local field pulse is shown. A spatially resolved switching map reveals a significant "write window" where vortex cores can be addressed correctly. Moreover, the external in-plane magnet extension unit allow analyzing the magnetic vortex rotational sense which is extremely practical for magnetic coupling investigations of magnetic coupling phenomena.
|
6 |
Perpendicular Magnetic Anisotropy Thin Films and Nanostructures for Future Recording Media ApplicationsGanss, Fabian 18 November 2022 (has links)
The increasing demand for nearline storage capacity in data centers calls for a continued enhancement in hard disk drive recording density far beyond one terabit per square inch. The thermal stability limit forces the drive manufacturers to develop new concepts in order to achieve this in the long term. Potential solutions are microwave-assisted magnetic recording (MAMR), heat-assisted magnetic recording (HAMR) and bit-patterned media (BPM).
A simple example of BPM based on sputter-deposited Co/Pd multilayers and prepatterned substrates at hypothetical recording densities up to one terabit per square inch was studied by magnetic force microscopy (MFM). This system achieved promising results at lower densities, but an actual application for data storage, especially at one terabit per square inch and higher densities, requires elaborate optimizations.
For some time now, FePt thin films have attracted much attention as prospective recording layers for high-density magnetic data storage due to their high magnetic anisotropy. The use of FePt films in HAMR is especially promising. This application has been tested successfully by Seagate and its key customers in recent years and is about to be introduced into the nearline hard disk drive market. It requires a tuning of the magnetic properties of FePt, especially of its Curie temperature. The addition of Cu proved to be effective in this regard and can also facilitate the formation of the crucial L10 structure and (001) texture during rapid thermal annealing of sputter-deposited thin films.
Such films were prepared as bilayers of Cu and FePt on Si substrates, annealed for 30 s, and analyzed by X-ray diffraction (XRD) and SQUID vibrating sample magnetometry (SQUID-VSM). The influence of large Cu additions on important properties like lattice parameters, mosaicity, magnetic anisotropy and Curie temperature is discussed. The chemical long-range order was calculated from the XRD data, and a dedicated chapter of this thesis covers the most important factors to be considered in such calculations for textured thin films and other samples.
The feasibility of creating patterned Fe-Cu-Pt films with perpendicular magnetic anisotropy, as needed for a combination of HAMR and BPM, by deposition through a PMMA mask, a lift-off process and subsequent annealing was investigated as well. The results indicate that the chosen approach might not lead to the required (001) texture when the nanostructures are small enough to compete with today's recording densities, so that either a continuous film might need to be etched after annealing or a seed layer might be required to induce the texture.:1. Motivation: Magnetic Data Storage
2. Experimental Techniques
3. Co/Pd Multilayers on Prepatterned Substrates
4. Fe-Pt and Fe-Cu-Pt Alloys
5. Rapid Thermal Annealing of FePt and FePt/Cu Films
6. Order Parameter Calculation
7. Summary
|
Page generated in 0.1281 seconds