• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 18
  • 8
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 112
  • 112
  • 31
  • 24
  • 21
  • 17
  • 17
  • 17
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Heat equations on Lie groups, symmetric spaces and Riemannian mainfolds /

Kim, Jinman. January 2005 (has links)
Thesis (Ph.D.)--York University, 2005. Graduate Programme in Mathematics and Statistics. / Typescript. Includes bibliographical references (leaves 78-83). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNR11588
42

Optimal Control of a Stochastic Heat Equation with Control and Noise on the Boundary

Govindaraj, Thavamani January 2018 (has links)
In this thesis, we give a mathematical background of solving a linear quadratic control problem for the heat equation, which involves noise on the boundary, in a concise way. We use the semigroup approach for the solvability of the problem. To obtain optimal controls, we use optimization techniques for convex functionals. Finally we give a feedback form for the optimal control. In order to enhance understanding of linear quadratic problem, we first present the methods in deterministic cases and then extend to noisy systems.
43

Methods of Computing Functional Gains for LQR Control of Partial Differential Equations

Hulsing, Kevin P. 09 January 2000 (has links)
This work focuses on a comparison of numerical methods for linear quadratic regulator (LQR) problems defined by parabolic partial differential equations. In particular, we study various methods for computing functional gains to boundary control problems for the heat equation. These methods require us to solve various equations including the algebraic Riccati equation, the Riccati partial differential equation and the Chandrasekhar partial differential equations. Numerical results are presented for control of a one-dimensional and a two-dimensional heat equation with Dirichlet or Robin boundary control. / Ph. D.
44

A Lie symmetry analysis of the heat equation through modified one-parameter local point transformation

Adams, Conny Molatlhegi 08 1900 (has links)
Using a Lie symmetry group generator and a generalized form of Manale's formula for solving second order ordinary di erential equations, we determine new symmetries for the one and two dimensional heat equations, leading to new solutions. As an application, we test a formula resulting from this approach on thin plate heat conduction. / Applied Mathematics / M.Sc. (Applied Mathematics)
45

A Lie symmetry analysis of the heat equation through modified one-parameter local point transformation

Adams, Conny Molatlhegi 08 1900 (has links)
Using a Lie symmetry group generator and a generalized form of Manale's formula for solving second order ordinary di erential equations, we determine new symmetries for the one and two dimensional heat equations, leading to new solutions. As an application, we test a formula resulting from this approach on thin plate heat conduction. / Applied Mathematics / M. Sc. (Applied Mathematics)
46

Construction of a control and reconstruction of a source for linear and nonlinear heat equations / Construction d'un contrôle et reconstruction de source dans les équtions linéaires et nonlinéaires de la chaleur

Vo, Thi Minh Nhat 04 October 2018 (has links)
Dans cette thèse, nous étudions un problème de contrôle et un problème inverse pour les équationsde la chaleur. Notre premier travail concerne la contrôlabilité à zéro pour une équation de la chaleur semi-linéaire. Il est à noter que sans contrôle, la solution est instable et il y aura en général explosion de la solution en un temps fini. Ici, nous proposons un résultat positif de contrôlabilité à zéro sous une hypothèse quantifiée de petitesse sur la donnée initiale. La nouveauté réside en la construction de ce contrôle pour amener la solution à l’état d’équilibre.Notre second travail aborde l’équation de la chaleur rétrograde dans un domaine borné et sous la condition de Dirichlet. Nous nous intéressons à la question suivante: peut-on reconstruire la donnée initiale à partir d’une observation de la solution restreinte à un sous-domaine et à un temps donné? Ce problème est connu pour être mal-posé. Ici, les deux principales méthodes proposées sont: une approche de filtrage des hautes fréquences et une minimisation à la Tikhonov. A chaque fois, nous reconstruisons de manière approchée la solution et quantifions l’erreur d’approximation / My thesis focuses on two main problems in studying the heat equation: Control problem and Inverseproblem.Our first concern is the null controllability of a semilinear heat equation which, if not controlled, can blow up infinite time. Roughly speaking, it consists in analyzing whether the solution of a semilinear heat equation, underthe Dirichlet boundary condition, can be driven to zero by means of a control applied on a subdomain in whichthe equation evolves. Under an assumption on the smallness of the initial data, such control function is builtup. The novelty of our method is computing the control function in a constructive way. Furthermore, anotherachievement of our method is providing a quantitative estimate for the smallness of the size of the initial datawith respect to the control time that ensures the null controllability property.Our second issue is the local backward problem for a linear heat equation. We study here the followingquestion: Can we recover the source of a linear heat equation, under the Dirichlet boundary condition, from theobservation on a subdomain at some time later? This inverse problem is well-known to be an ill-posed problem,i.e their solution (if exists) is unstable with respect to data perturbations. Here, we tackle this problem bytwo different regularization methods: The filtering method and The Tikhonov method. In both methods, thereconstruction formula of the approximate solution is explicitly given. Moreover, we also provide the errorestimate between the exact solution and the regularized one.
47

Declarative modeling of coupled advection and diffusion as applied to fuel cells

Davies, Kevin L. 22 May 2014 (has links)
The goal of this research is to realize the advantages of declarative modeling for complex physical systems that involve both advection and diffusion to varying degrees in multiple domains. This occurs, for example, in chemical devices such as fuel cells. The declarative or equation-based modeling approach can provide computational advantages and is compatible with physics-based, object-oriented representations. However, there is no generally accepted method of representing coupled advection and diffusion in a declarative modeling framework. This work develops, justifies, and implements a new upstream discretization scheme for mixed advective and diffusive flows that is well-suited for declarative models. The discretization scheme yields a gradual transition from pure diffusion to pure advection without switching events or nonlinear systems of equations. Transport equations are established in a manner that ensures the conservation of material, momentum, and energy at each interface and in each control volume. The approach is multi-dimensional and resolved down to the species level, with conservation equations for each species in each phase. The framework is applicable to solids, liquids, gases, and charged particles. Interactions among species are described as exchange processes which are diffusive if the interaction is inert or advective if it involves chemical reactions or phase change. The equations are implemented in a highly modular and reconfigurable manner using the Modelica language. A wide range of examples are demonstrated—from basic models of electrical conduction and evaporation to a comprehensive model of a proton exchange membrane fuel cell (PEMFC). Several versions of the PEMFC model are simulated under various conditions including polarization tests and a cyclical electrical load. The model is shown to describe processes such as electro-osmotic drag and liquid pore saturation. It can be scaled in complexity from 4000 to 32,000 equations, resulting in a simulation times from 0.2 to 19 s depending on the level of detail. The most complex example is a seven-layer cell with six segments along the length of the channel. The model library is thoroughly documented and made available as a free, open-source software package.
48

Physical Motivation and Methods of Solution of Classical Partial Differential Equations

Thompson, Jeremy R. (Jeremy Ray) 08 1900 (has links)
We consider three classical equations that are important examples of parabolic, elliptic, and hyperbolic partial differential equations, namely, the heat equation, the Laplace's equation, and the wave equation. We derive them from physical principles, explore methods of finding solutions, and make observations about their applications.
49

Finite Difference Methods for Approximating Solutions to the Heat Equation

Neuberger, Barbara O. (Barbara Osher) 08 1900 (has links)
This paper is concerned with finite difference methods for approximating solutions to the partial differential heat equation. The first chapel gives some introductory background into the physical problem, then motivates three finite difference methods. Chapters II through IV provide statements and proofs for the theorems used in the methods of Chapter I. The final Chapter, V, provides conclusions and an indication of future work. An appendix includes the computer codes written by the author with numerical results.
50

Calculation of Time-Dependent Heat Flow in a Thermoelectric Sample

Siqueira, Sunni Ann 01 May 2012 (has links)
In this project, the time-dependent one-dimensional heat equation with internal heating is solved using eigenfunction expansion, according to the thermoelectric boundary conditions. This derivation of the equation describing time-dependent heat flow in a thermoelectric sample or device yields a framework that scientists can use (by entering their own parameters into the equations) to predict the behavior of a system or to verify numerical calculations. Allowing scientists to predict the behavior of a system can help in decision making over whether a particular experiment is worthy of the time to construct and execute it. For experimentalists, it is valuable as a tool for comparison to validate the results of an experiment. The calculations done in this derivation can be applied to pulsed cooling systems, the analysis of Z-meter measurements, and other transient techniques that have yet to be invented. The vast majority of the calculations in this derivation were done by hand, but the parts that required numerical solutions, plotting, or powerful computation, were done using Mathematica 8. The process of filling in all the steps needed to arrive at a solution to the time-dependent heat equation for thermoelectrics yields many insights to the behavior of the various components of the system and provides a deeper understanding of such systems in general.

Page generated in 0.1258 seconds