• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 14
  • 12
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 184
  • 184
  • 53
  • 41
  • 28
  • 20
  • 19
  • 18
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Framtagning av beräkningsmodell för uppvärmningssystem : med fokus på kombinationen fjärrvärme och frånluftsvärmepumpar / Development of a calculation model for heating systems : with focus on the combination of district heating and exhaust air heat pumps

Edström, Johan, Hammar, Samuel January 2016 (has links)
Till följd av EU:s miljömål 2020 har svenska statliga och kommunala miljömål satts upp för att minska energianvändningen. EU:s 2020-mål syftar till att minska energianvändningen i Europa med 20 procent fram till år 2020 från det att målet sattes upp 2010. På kommunal nivå har detta inneburit att fastighetsbolag, privata men främst kommunala aktörer, har tvingats att se över sin energianvändning. Arbetet i denna rapport föranleds av en av de besparingsåtgärder som har vidtagits nämligen att komplettera befintliga fjärrvärmeuppvärmningssystem med värmepumpar. Uppdraget avser utveckling och utvärdering av en beräkningsmodell för denna typ av system. För att skapa ett pålitligt beslutsunderlag i arbetet med att minska energianvändningen krävs välgrundade beräkningar. Befintliga beräkningsmodeller lägger stor vikt vid ekonomiska faktorer och tar därmed liten hänsyn till tekniska aspekter och omgivande faktorer. Målet med arbetet har varit att skapa en beräkningsmodell vilken i större utsträckning speglar den faktiska situationen och påvisar ett mer välgrundat beslutsunderlag. Arbetet inleddes med en litteraturstudie vilken innefattade relevant forskning och grundläggande fakta om värmepumpar och fjärrvärmesystem. Beräkningsmodellen har utvecklats löpande under projektet där nya funktioner samt ny information ständigt tillkommit. Projektet har resulterat i en fungerande beräkningsmodell vilken innefattar fler parametrar än tidigare motsvarigheter. Tillsammans med uppdragsgivaren sattes tre olika mål upp för beräkningsmodellen, dessa var:  Att på ett intuitivt sätt presentera information och data.  Att skapa en transparent struktur vilken är enkel att följa.  Att skapa ett flöde genom modellen vilket följer en önskad arbetsgång. Dessa mål anses ha blivit uppfyllda, dock finns möjlighet till vidareutveckling. Modellen skulle exempelvis kunna kompletteras med mer automatiserade optimeringsberäkningar och justeras för att hantera andra typer av systemlösningar. / As a result of the EU's environmental 2020 goal, the Swedish government and municipal boards has put up internal goals to reduce energy consumption. EU 2020 goal aims to reduce energy consumption in Europe by 20 percent by the year 2020 from that the target was set in 2010. At the municipal level, this has meant that private but mainly public housing properties have been required to review their energy use. The work in this report is based on one of the savings measures that have been taken, which is to supplement existing district heating systems with exhaust air heat pumps. The project aims to develop a calculation model for evaluation and computation for this type of system. To create a reliable basis for decisions, efforts were made to produce just calculations. Existing computational models are focused on economic factors and thus takes little consideration of technological aspects and environmental factors. The aim of the work has been to create a computational model which more closely reflects the real situation and demonstrates a more informative decision basis. The work began with a literature review which included relevant research and basic facts about exhaust air heat pumps and district heating systems. The calculation model has been developed continuously during the project in which new functions and new information constantly has been added. The project has resulted in a working computational model which includes many more parameters than previous reviewed models. Together with the client three sub goals were set up for the model, these were:  To intuitively present information and data.  To create a transparent structure which is simple to follow.  To create a flow through the model, which follows a desired work process. These goals are considered to have been fulfilled in the developed calculation model, however, it's possible to further develop this model. The model could, for example, be supplemented with more automated optimization calculations and be adjusted to handle other kinds of heating systems.
92

Estudios prospectivos para la implementación de sistemas SWHP para aplicaciones de calefacción y agua caliente sanitaria en Chile

Mena Armella, Arturo Ignacio January 2018 (has links)
Memoria para optar al título de Ingeniero Civil Mecánico / El elevado consumo de calefacción y los elevados índices de contaminación ambiental provocado por el consumo leña (u otro combustible fósil) en algunas regiones de Chile. Han motivado al desarrollo del presente trabajo de título como una alternativa eficiente, limpia y sustentable. Este consiste en la realización de estudios prospectivos técnicos-económicos para la implementación de tecnologías de bombas de calor (BC) de fuente de agua superficial (SWHP, Surface Water Heat Pump) para el suministro de calefacción (CC) y agua caliente sanitaria (ACS) en Chile. Específicamente se busca desarrollar el diseño básico de 3 centrales de calefacción distrital, que utilicen como mecanismo de generación de calor los sistemas SWHP para 3 casos de estudio en Chile, en donde el suministro de CC y ACS se realiza mediante la circulación de agua caliente por una red de distribución. Posteriormente se estudia la factibilidad económica de los sistemas diseñados para el modelo de negocio propuesto. Para el desarrollo de este trabajo se emplea la siguiente metodología: i) Recopilación de antecedentes generales, ii) Investigación del estado del arte de los sistemas SWHP, iii) Selección y caracterización de los casos de estudio, iv) Caracterización de la demanda térmica de los casos de estudio, v) Desarrollo de diseños de las centrales de calefacción distrital de tipo RWSHP (River Water Source Heat Pump), SWSHP (Sea Water Source Heat Pump) y LWSHP (Lake Water Source Heat Pump), vi) Análisis de desempeño y eficiencia energética y vii) evaluación de la factibilidad económica de las soluciones. Los principales resultados son los siguientes: RWSHP (Valdivia) SWSHP (S. P. de la Paz) LWSHP (Puerto Octay) Usuarios 553 casas 125 casas y 340 deptos. 5 Edificios públicos Reservorio Río Calle-Calle Océano pacífico Lago Llanquihue Captación Open loop direct Open loop indirect Open loop direct Demanda Térmica 3.533[GWht/año] 2 .859 [GWht/año] 889[GWht/año] 2.989[kW] 2.542[kW] 341[kW] Bomba de Calor (6) Mayekawa N6HK (6) Mayekawa N6HK (1) Sabroe Dual Pack COP Sistema 3,82 3,62 3,94 VAN (10%) 977.579 [USD] 1.046.150 [USD] 582.569 [USD] TIR 13 % 14 % 22 % Tarifa [CLP/kWht] 165 185 162 Se concluye los sistemas SWHP son competitivos para aplicaciones de CC y ACS presentando COP medio de 3,79 y una buena rentabilidad si se considera un modelo de negocio tipo ESCO, sin embargo, las tarifas no son competitivas en relación con el costo de las alternativas convencionales de calefacción; razón por la cual se justifica algún subsidio de gobierno, fijando así el precio en 78 [CLP/kWht] para los usuarios beneficiados con esta tecnología. También aprecia que sistemas SWHP open loop directo (RWSHP y LWSHP) tienen un mejor desempeño en comparación al tipo open loop indirecto (SWSHP), esto se debe a que el directo aprovecha todo el potencial del reservorio; mientras que los indirectos deben entregar parte de ese calor a un fluido secundario para hacer el transporte hacia la BC. Finalmente se observa que el COP del sistema es sensible a la temperatura del reservorio y de la temperatura de diseño a la salida del condensador de la BC (mayor COP a mayor T° del acuífero y menor T° de diseño).
93

Aplicação de bombas de calor em planta de separação de propeno / Application of Heat Pumps at Propylene Distillation Plant

Galvão, Marcello Lima 21 October 2016 (has links)
Processos de refinação de petróleo caracterizam-se pelo intenso consumo energético. Dentre as mais variadas operações presentes nesta indústria, a separação de correntes por torres de destilação apresenta posição de destaque, despendendo mais de 40% da energia gasta por uma refinaria. Plantas de separação de propeno, importante produto para a indústria petroquímica visando a produção de polipropileno, se enquadram neste sentido, requerendo torres de destilação de considerável uso energético. Apesar da grande rejeição de calor referente a este consumo, por apresentar baixo nível térmico associado, frequentemente não se observa o seu aproveitamento. Neste contexto, bombas de calor apresentam-se como excelente alternativa para recuperação energética de correntes de rejeito térmico, com vastos exemplos na literatura aplicados à indústria e, especificamente associados a torres de destilação. Neste trabalho avaliou-se, por meio de modelagem e simulação computacional, a aplicação de duas modalidades de bomba de calor em ciclo de compressão de vapor (compressão de topo e compressão do fundo despressurizado), e uma em ciclo de absorção, integradas a uma planta de separação de propeno de uma refinaria localizada no Brasil, comparativamente a uma planta equivalente utilizando processo de destilação convencional com refervedor de fundo e condensador de topo. Para as premissas definidas no trabalho, verificou-se como o melhor resultado, a aplicação da bomba de calor por compressão de vapor de topo da coluna de destilação, o qual demonstra que 4,1 MW associado ao trabalho de eixo do compressor, torna possível uma economia energética de mais de 80% do consumo de vapor dágua e água de resfriamento, se comparados à planta convencional, sem a utilização de bomba de calor. Cálculos de rendimento exergético demonstram a melhor configuração ser 2,4 vezes mais eficiente que o modelo convencional. Limitações de troca térmica foram observadas no estudo de caso da bomba de calor de compressão de fundo despressurizado, demandando uma recirculação adicional de propano ao ciclo, com consequente redução de rendimento exergético a um patamar intermediário entre o caso convencional e o melhor resultado observado. Já para a bomba de calor de absorção, verificou-se, para o fluido de trabalho praticado e condição simulada, resultado aquém da situação convencional. Por fim, avalia-se que a aplicação de fonte térmica alternativa (vapor sub-atmosférico), de baixo conteúdo exergético, ainda que de difícil obtenção junto à refinaria, poderia viabilizar a inversão dos resultados observados, recomendando a sua verificação de uso para estudos futuros. / Oil refining process are recognized by its very intense energy consumption. In this industry, distillation columns are extensively used for product separation. Contributing with more than 40% of refinery energy consumption, distillation units typically require high level of heat rejection, frequently not capable of being directly used, due to its low temperature profile. In this scenario, the distillation of propylene, important product for petrochemical industry is set as one of the most energy intense refinery process. Process integration using heat pumps are considered an excellent choice to provide waste heat upgrade, with numerous examples applied to industry and specifically for distillation towers cited in the literature. In this work, two different vapor compression heat pump cycles (tower overhead compression and bottom flash compression) and an absorption heat pump cycle were applied to a propylene distillation facility located at a Brazilian refinery, in a comparison analysis with a conventional distillation process with typical bottom reboiler and overhead condenser. Considering the defined basis, the overhead vapor compression scheme has shown the better result, since its shaft compressor work of 4.1 MW, integrated to the tower allows reducing more than 80% of steam and cooling water consumption originally associated. An exergetic analysis was performed, confirming the proposal scheme to be 2.4 times more efficient than the process without heat pump integration. An intermediate result, between the conventional distillation and associated overhead vapor compression heat pump was observed in the bottom flash case, since, as consequence of a heat exchange bottlenecking, an additional propane compression loop had to be applied. With regards to the absorption heat pump scheme, considering the chosen fluid and the plant work conditions, no advantage was observed in comparison to the conventional case. In time, an alternative utility (vacuum steam), with low exergy content, was applied to the conventional system, replacing the low pressure steam originally used. Besides its difficult practical application, the alternative utility has proved to be able to reverse the previous work results, thus, further studies are recommended regarding its viability of use.
94

Thermodynamic analysis of air source heat pumps and micro combined heat and power units participating in a distributed energy future

Cooper, Samuel J. G. January 2013 (has links)
Achieving the reductions in carbon dioxide emissions which are necessary will require improvements in the way in which domestic space heating is supplied. Air Source Heat Pumps and micro-Combined Heat and Power units both have the potential to reduce emissions while using primary energy resources more efficiently. The performance which these technologies can achieve is fundamental to fulfilling this potential and yet it is still subject to some uncertainty. This thesis analyses the performance of Air Source Heat Pumps and micro-Combined Heat and Power units in terms of their energy and exergy requirements and in terms of the carbon dioxide emissions associated with their operation. A review of the literature identified that it was appropriate to develop a novel modelling approach. Models of many components currently exist and these are adopted and extended wherever possible within this modelling approach. However, it is the unique way in which this research combines these models and adds additional components which delivers performance data relating to a wider range of conditions at a greater level of detail than that which was previously available. The model which was developed can dynamically simulate the heating and power demands in many dwellings simultaneously, facilitating meaningful study of effects which are dependent upon the sum of their power flows. Consideration of the effect of operating conditions includes permutations of climate, control systems (including those which engage with demand side management), grid generation mixes and building properties. Efficient Air Source Heat Pumps units have the potential to make energy and carbon emissions savings at present but their performance is sensitive to the conditions studied. In particular, appropriate control of the units can yield energy savings of around 25%. Additionally, the carbon emissions intensity of the grid is an important consideration which is explored in depth. Currently, energy requirements and carbon emissions can be reduced by the use of micro-Combined Heat and Power units. Their potential to further reduce carbon emissions diminishes if the grid is predominantly decarbonised but units with high electrical efficiencies can still save energy. The effect of the control approach which is adopted is also significant and has different effects on fuel-cell based units compared to combustion-based units. The key contribution of this work is the analysis of performance data for a selection of units operating under a range of conditions, calculated with a consistent, accurate methodology. Comparison is made between the technologies and between the effects of different operating conditions. A second significant contribution of this work is the development of the model which was used to generate the performance results. These advances allow more detailed comparative analysis of performance data in a wider range of conditions than previously possible.
95

Analyses of Energy Infrastructure Serving a Dense Urban Area: Opportunities and Challenges for Wind Power, Building Systems and Distributed Generation

Waite, Michael B. January 2016 (has links)
This dissertation describes methodologies for evaluating a set of anticipated and recommended energy infrastructure changes essential to achieving deep greenhouse gas emissions reductions in a dense urban area: Deep penetration of grid-connected wind power, widespread adoption of electric heat pumps, multiple potential services from extensive deployment of distributed generation, and increasing focus on auxiliary energy in heating and cooling systems as cities continue to grow in population and height. The focus of the research presented here was New York City and the surrounding New York State electricity supply infrastructure. After developing a wind power model based on an NREL model wind data set, a linear program model showed that after passing a low-curtailment threshold of 10 GW, energy-related wind power curtailment is driven largely by continuous operation of baseload generation and misalignment of winter wind power peaks and existing summer electricity demand peaks. Separate analyses showed the potential for increase wind-generated electricity utilization through increased use of heat pumps in New York City. A suite of models was developed to assess the zonal effects in New York City of deep statewide penetration of wind power and widespread adoption of electric heat pumps in New York City. New York City was found to have highly fluctuating net loads in deep wind penetration scenarios. Further, with large amounts of existing space heating demand replaced by heat pumps, the increased winter electricity demand peaks occurred infrequently enough that the additional generation capacity required to meet those loads would have a capacity factor well less than 1%. Small-scale, natural gas-fueled internal combustion engines deployed as distributed generation were shown to improve the ability of the system to respond to load fluctuations, to be a more economical option than new large centralized generators at the low capacity factor, and to reduce overall system gas usage due to mitigating part-load effects and startup fuel requirements. This distributed generation, which could in reality also include combined heat and power systems as well as battery storage standing alone, connected to rooftop solar or in electric vehicles, also has potential system resilience benefits. The last research effort described here included long-term monitoring of a high-rise mixed use building’s hydronic system before and after a retrofit of hydraulic equipment. Significant annual reductions of 40% energy usage for pumping were computed, primarily due to part-load flow control effects. Analysis of the monitoring data, as well as computations related to theoretical performance of hydraulic networks, showed that this approach also has potential to reduce peak loads, particularly in high-rise buildings.
96

Contribution à l’évaluation biogéochimique des impacts liés à l’exploitation géothermique des aquifères superficiels : expérimentations et simulations à l’échelle d’un pilote et d’installations réelles / Contribution to the biogeochemical evaluation of the impacts related to the geothermic exploitation of the near-surface aquifers : experiments and simulations on a pilot and real installation scale

Garnier, Frédéric 25 October 2012 (has links)
Pour la climatisation de bâtiments ou d’installations industrielles, les nappes d’eaux superficielles représentent une source de frigories très convoitée. Leurs exploitations intensives depuis plusieurs dizaines d’années conjuguées au redéploiement de la filière géothermique ces dernières années, soulèvent des préoccupations quant à la préservation des ressources en eau. Dans ce contexte, la présente étude vise à évaluer l’impact de variations locales de température sur la qualité physico-chimique et microbiologique des eaux souterraines sur la base (i) de suivis in-situ au niveau de 3 installations réelles exploitant les nappes d’eaux superficielles et, (ii) d’expérimentations sur un pilote (BIOTHERMEX) permettant de reproduire, en conditions parfaitement maitrisées, l’effet de la propagation d’un panache thermique dans un modèle réduit d’aquifère. Dans la gamme de température relevée sur site, les principaux résultats obtenus montrent que les impacts thermiques sont circonscrits au voisinage immédiat de l’installation, pouvant altérer jusqu’à plus d’une dizaine de degrés la sténothermie des nappes. Le suivi des paramètres physico-chimiques n’ont pas fait apparaitre de perturbations significatives sur la période de surveillance, constat étayé par des modélisations hydrogéochimiques. En revanche, une influence significative a été relevée au niveau des principaux descripteurs microbiologiques (activité, diversité de la microflore totale). Enfin, les expériences menées à l’échelle du laboratoire ont permis d’appréhender finement le comportement réactionnel du système et de définir une température de réinjection critique, au-delà de laquelle des désordres potentiels sont attendus. / The use of shallow groundwater as heat source for heat pump is very coveted for air-conditioning of building or industrial facilities. Their intensive use during many years combined with the redeployment of the geothermal industry these last years, raise concerns about the safeguarding of the water resources. In such a context, the present study aims to evaluate the impact of local variations of temperature on the physicochemical and microbiological quality of groundwater systems on the basis of (I) field investigation and, (II) experiments on a pilot (named BIOTHERMEX) making it possible to reproduce, in perfectly supervised conditions, the effect of the propagation of a thermal plume in a reduced aquifer model. Within the temperature recorded on site, principal outcomes showed that thermal impacts are confined in the immediate vicinity of the installation, and were able to deteriorate, up to about ten degrees, the stenothermy of the groundwater systems. The evolution of the physicochemical parameters did not reveal any significant disturbances over the monitoring period, this being also predicted by hydrogeochemical modeling. On the other hand, a significant influence was raised about some microbiological indicators-descriptors (namely activity, diversity of the total microflora). Lastly, the experiments undertaken on the laboratory scale made it possible to finely apprehend the reactional behavior of the system and to define a critical temperature of re-injection beyond which, potential disorders are expected.
97

Aplicação de bombas de calor em planta de separação de propeno / Application of Heat Pumps at Propylene Distillation Plant

Marcello Lima Galvão 21 October 2016 (has links)
Processos de refinação de petróleo caracterizam-se pelo intenso consumo energético. Dentre as mais variadas operações presentes nesta indústria, a separação de correntes por torres de destilação apresenta posição de destaque, despendendo mais de 40% da energia gasta por uma refinaria. Plantas de separação de propeno, importante produto para a indústria petroquímica visando a produção de polipropileno, se enquadram neste sentido, requerendo torres de destilação de considerável uso energético. Apesar da grande rejeição de calor referente a este consumo, por apresentar baixo nível térmico associado, frequentemente não se observa o seu aproveitamento. Neste contexto, bombas de calor apresentam-se como excelente alternativa para recuperação energética de correntes de rejeito térmico, com vastos exemplos na literatura aplicados à indústria e, especificamente associados a torres de destilação. Neste trabalho avaliou-se, por meio de modelagem e simulação computacional, a aplicação de duas modalidades de bomba de calor em ciclo de compressão de vapor (compressão de topo e compressão do fundo despressurizado), e uma em ciclo de absorção, integradas a uma planta de separação de propeno de uma refinaria localizada no Brasil, comparativamente a uma planta equivalente utilizando processo de destilação convencional com refervedor de fundo e condensador de topo. Para as premissas definidas no trabalho, verificou-se como o melhor resultado, a aplicação da bomba de calor por compressão de vapor de topo da coluna de destilação, o qual demonstra que 4,1 MW associado ao trabalho de eixo do compressor, torna possível uma economia energética de mais de 80% do consumo de vapor dágua e água de resfriamento, se comparados à planta convencional, sem a utilização de bomba de calor. Cálculos de rendimento exergético demonstram a melhor configuração ser 2,4 vezes mais eficiente que o modelo convencional. Limitações de troca térmica foram observadas no estudo de caso da bomba de calor de compressão de fundo despressurizado, demandando uma recirculação adicional de propano ao ciclo, com consequente redução de rendimento exergético a um patamar intermediário entre o caso convencional e o melhor resultado observado. Já para a bomba de calor de absorção, verificou-se, para o fluido de trabalho praticado e condição simulada, resultado aquém da situação convencional. Por fim, avalia-se que a aplicação de fonte térmica alternativa (vapor sub-atmosférico), de baixo conteúdo exergético, ainda que de difícil obtenção junto à refinaria, poderia viabilizar a inversão dos resultados observados, recomendando a sua verificação de uso para estudos futuros. / Oil refining process are recognized by its very intense energy consumption. In this industry, distillation columns are extensively used for product separation. Contributing with more than 40% of refinery energy consumption, distillation units typically require high level of heat rejection, frequently not capable of being directly used, due to its low temperature profile. In this scenario, the distillation of propylene, important product for petrochemical industry is set as one of the most energy intense refinery process. Process integration using heat pumps are considered an excellent choice to provide waste heat upgrade, with numerous examples applied to industry and specifically for distillation towers cited in the literature. In this work, two different vapor compression heat pump cycles (tower overhead compression and bottom flash compression) and an absorption heat pump cycle were applied to a propylene distillation facility located at a Brazilian refinery, in a comparison analysis with a conventional distillation process with typical bottom reboiler and overhead condenser. Considering the defined basis, the overhead vapor compression scheme has shown the better result, since its shaft compressor work of 4.1 MW, integrated to the tower allows reducing more than 80% of steam and cooling water consumption originally associated. An exergetic analysis was performed, confirming the proposal scheme to be 2.4 times more efficient than the process without heat pump integration. An intermediate result, between the conventional distillation and associated overhead vapor compression heat pump was observed in the bottom flash case, since, as consequence of a heat exchange bottlenecking, an additional propane compression loop had to be applied. With regards to the absorption heat pump scheme, considering the chosen fluid and the plant work conditions, no advantage was observed in comparison to the conventional case. In time, an alternative utility (vacuum steam), with low exergy content, was applied to the conventional system, replacing the low pressure steam originally used. Besides its difficult practical application, the alternative utility has proved to be able to reverse the previous work results, thus, further studies are recommended regarding its viability of use.
98

Constrained thin film desorption through membrane separation

Thorud, Johnathan D. 17 February 2005 (has links)
A constrained thin film desorption scheme has been experimentally tested to determine the desorption rates for water from an aqueous lithium bromide mixture through a confining membrane. Variable conditions include the inlet concentration, pressure differential across the membrane, and channel height. Desorption takes place in a channel created between two parallel plates with one of the walls being both heated and porous. A hydrophobic porous membrane creates a liquid-vapor interface and allows for vapor removal from the channel. Inlet concentrations of 32 wt%, 40 wt%, and 50 wt% lithium bromide were tested at an inlet sub-atmospheric pressure of 33.5 kPa. Pressure differentials across the membrane of 6 kPa and 12 kPa were imposed along with two channel heights of 170 μm and 745 μm. All cases were run at an inlet mass flow rate of 3.2 g/min, corresponding to Reynolds numbers of approximately 2.5 to 4.5. The membrane surface area for desorption was 16.8 cm². A maximum desorption rate (vapor mass flow rate) of 0.51 g/min was achieved, for the 32 wt%, 12 kPa pressure differential, and 170 μm channel. Increasing the pressure differential across the channel allowed for higher desorption rates at a fixed wall superheat, and delayed the transition to boiling. As the inlet concentration increased the desorber's performance decreased as more energy was required to produce a fixed desorption rate. Results are also presented for the variation in the heat transfer coefficient with the wall superheat temperature. The increase in the channel height had a negative influence on the heat transfer coefficient, requiring larger superheat values to produce a fixed desorption rate. / Graduation date: 2005 / Best scan available for tables and computer code in the appendices. The original is faded.
99

Binary fluid heat and mass exchange at the microscale in internal and external ammonia-water absorption

Nagavarapu, Ananda Krishna 14 August 2012 (has links)
Absorption space-conditioning systems are environmentally benign alternatives to vapor compression systems and have the capability of being driven by waste heat. However, a lack of practically feasible and economically viable compact heat and mass exchangers is a major limitation in the success of this technology. The viability of the absorption cycle depends upon the performance of the absorber, which experiences large heat and mass transfer resistances due to adverse temperature and concentration gradients during the phase change of the binary mixture working fluid, resulting in large overall component sizes. Understanding of the coupled heat and mass transfer during binary fluid mixture absorption at the microscales is critical for the miniaturization of these components, which will enable broad implementation of this technology. The proposed study aims to achieve this by investigating ammonia-water absorption for two distinct flow configurations: external falling films and internal convective flows. For the falling-film absorption case, ammonia-water solution flows around an array of small diameter coolant tubes while absorbing vapor. This absorber is installed in a test facility comprising all components of a single-effect absorption chiller to provide realistic operating conditions at the absorber. Local temperature, pressure, and flow measurements will be taken over a wide range of operating conditions and analyzed to develop a heat and mass transfer model for falling-film ammonia-water absorption. A microscale convective flow absorber will also be investigated. This absorber consists of an array of parallel, aligned alternating shims with integral microscale features, enclosed between cover plates. These microscale features facilitate flow of various fluid streams and the associated heat and mass transfer. The use of microchannels induces high heat and mass transfer rates without any active or passive surface enhancement. The microscale absorber for small-scale applications will be evaluated over a wide range of operating conditions on a single-effect absorption heat pump breadboard test facility. The study will conclude with a comparison of the two flow configurations for absorption, with recommendations for their application in future miniaturization efforts
100

Analysis of alternative energy options for buildings

Rezaie, Behnaz 01 August 2009 (has links)
The importance of utilizing different types of energy and their technical application is discussed. Awareness around the globe about the world energy crisis and its critical environmental condition has put more emphasis on the use of renewable energies in every corner of life. It is a well‐known fact that global warming, inefficient use of energy and greenhouse gases are damaging the environment, species and human life drastically. These issues will be discussed in recently conducted research. To address the crucial state of our environment, two simultaneous scenarios are considered. Initially, energy conservation and the switch to a low carbon/no carbon fuel are studied. As for energy conservation in buildings, smart methods in the use of energy in buildings are discussed. Based on different research reported, humans must change their attitude toward the use of resources, and in particular, be conscientious about energy consumption. Next, renewable energy promises a suitable alternative to energy needs in this century, and the best means to overcome the environmental issue and energy crisis is discussed. The practical methods of calculation for solar technology equipment, ground source heat pumps, and wind turbines are explained. In the application part of the study, four buildings are chosen as case studies; two of them from residential sectors, one is a commercial/institutional building, and the fourth is an industrial building. A ground source heat pump for heating and cooling, a solar water heater for heating space or hot water, and a photovoltaic panel for generating electricity are designed for the case studies. Even projects under hybrid systems combined from two technologies are designed. 36 different energy options are calculated for the four case studies. Results show that if a target is reducing CO2 emissions, what systems are the best. In contrast, when decision making is based on budget, what system is the first choice? Not only are technology, environmental protection and cost the main parameters for deciding on renewable technologies, but so are reliability, installation, maintenance and ease of use. Hence, renewable energy systems are categorized based on a broad vision.

Page generated in 0.057 seconds