• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Absolute Instabilities in Heated Jets

Demange, Simon 30 June 2021 (has links) (PDF)
When entering a planet’s atmosphere, spacecraft induce a strong compression shock and must be protected from the resulting extreme heat flux by a thermal protection system made of either reusable or ablative materials. To characterise these materials, the harsh flow conditions of atmospheric entry are reproduced in plasma wind tunnels, where a jet of gas heated up to ionisation is directed at material samples for prolonged testing. Unfortunately, heated jets exhibit complex dynamic behaviours, resulting in oscillations that increase the uncertainties in the experiments.At sufficient Reynolds numbers, the dynamic behaviour of heated jets shifts from an amplifier to a self-sustained oscillator type via a Hopf bifurcation, if the centreline-to-ambient density ratio falls below a given threshold. This change is known in the literature to be related to the onset of absolute instabilities in the flow. However, this type of instability is usually studied for a simplified description of the gas, which is not suitable for the case of a plasma wind tunnel.This doctoral work investigates the nature of the instabilities responsible for the oscillations observed in a plasma jet, similar to the one in the VKI Plasmatron facility. The analysis is carried out by comparing results from different numerical methods, including linear stability analyses (both local and global) and direct numerical simulations. The thesis first describes the effect of high-temperature gas models on the stability of synthetic jets found in the literature, before analysing the case of Plasmatron.The analysis of synthetic jets with real-gas effects shows that the onset of the first dissociation reactions in the flow has a strong influence on the prevailing type of instability. Furthermore, if a sufficiently long region of absolute instability is present in the jet, the flow bifurcates to a periodic limit cycle, and steady state solutions become inadequate to describe the flow and its dynamic behaviour. In this case, a stability analysis of the time-averaged state can accurately reproduce the results of direct numerical simulations. In the case of Plasmatron, a large region of absolute instability is revealed in the plasma jet, suggesting that the observed oscillations are caused (in part) by a global non-linear mode and that the flow has entered a limit cycle. Trends of the absolute instability frequency with respect to the driving parameters of Plasmatron are in agreement with experimental observations.The present work confirms that global stability features of heated jet flows are very sensitive to subtle changes of the undisturbed or time-averaged state, which results from technological constraints in the case of Plasmatron. Furthermore, this thesis has shown the relevance of including high-temperature gas effects in the stability analysis of high-enthalpy jets. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
2

Fluorescence induite par laser multibande appliquée à la mesure de température dans les milieux complexes / Multiband Laser-induced Fluorescence applied to temperature measurement in complex media

Delconte, Alain 20 October 2009 (has links)
La fluorescence induite par laser multibande est une technique non intrusive permettant d’accéder à la température de la phase liquide dans des milieux complexes. L’application de cette technique dans des liquides monophasiques où le chemin optique est variable (produit de la concentration moléculaire du traceur et de la distance dans le milieu liquide entre le volume de mesure et l’optique de détection) a été considérée. Le rapport des intensités de fluorescence collectées sur deux bandes spectrales permet de s’affranchir de la concentration en traceur fluorescent, de l’intensité laser incidente et du volume de mesure. Une troisième bande spectrale de détection permet de prendre en compte le terme de ré-absorption de la fluorescence dans le cas de chemins optiques non-négligeables et variables. Puis l’application de la technique à la mesure de la température de la phase liquide d’un spray est présentée. Un traitement spécifique du signal a été développé afin de tenir compte de la nature aléatoire du signal de fluorescence liée à la présence de gouttes dans le volume de mesure. De plus, ce traitement a été adapté afin de rendre possible le couplage des données de fluorescence avec des mesures granulométriques effectuées par la technique phase Doppler dans la perspective finale d’obtenir des températures de goutte par classe de taille. Cependant plusieurs phénomènes perturbateurs ont été mis en évidence : - une dépendance inattendue et non linéaire à la taille de goutte du rapport des intensités de fluorescence collectées sur deux bandes spectrales. - une forte diffusion de la lumière laser incidente par le nuage de gouttelettes induit une fluorescence bien au delà de la zone d’excitation laser. Cette fluorescence parasite est néanmoins détectée dans la profondeur de champ du dispositif optique et se conjugue avec l’effet non-linéaire de la taille des gouttes. Une stratégie de correction de ces différents phénomènes est proposée et une expérience de validation est réalisée sur un spray chauffé injecté dans une cellule saturée en vapeur / Multiband laser-induced fluorescence is a non-intrusive technique able to provide a measurement of the liquid phase of complex media. The application of this technique in single phase liquids, with a variable optical path (product of the fluorescent tracer molecular concentration by the distance between the probe volume and the collection optics in the liquid) was considered. The ratio of the fluorescence intensities collected on two spectral bands allows removing the influence of the fluorescence tracer concentration, incident laser intensity and probe volume. A third spectral band of detection is used to take into account the re-absorption of the fluorescence in the case of non negligible and variable optical paths. Then, the application of this technique to the measurement of the temperature of the liquid phase of a spray is presented. A specific data processing was developed in order to take into account the random presence of droplets in the probe volume. Moreover, the processing was adapted to achieve combined fluorescence and droplet size measurements using the phase Doppler technique. The overall foreseen goal is to measure temperature per droplet size class. However, several disturbing phenomena were highlighted: - an unexpected non-linear dependence on the droplet size of the ratio of the fluorescence intensities collected on two spectral bands, - a strong incident laser light scattering by the droplets cloud, which induces a fluorescence beyond the excitation zone. This fluorescence is also collected in the depth of field of the optical device and combines with the non-linear size dependence. A correction strategy of these phenomena was implemented and a validation experiment on a heated spray injected in a vapour-saturated cell was performed
3

Experimental studies in jet flows and zero pressure-gradient turbulent boundary layers

Örlü, Ramis January 2009 (has links)
This thesis deals with the description and development of two classical turbulent shear flows, namely free jet and flat plate turbulent boundary layer flows. In both cases new experimental data has been obtained and in the latter case comparisons are also made with data obtained from data bases, both of experimental and numerical origin. The jet flow studies comprise three parts, made in three different experimental facilities, each dealing with a specific aspect of jet flows. The first part is devoted to the effect of swirl on the mixing characteristics of a passive scalar in the near-field region of a moderately swirling jet. Instantaneous streamwise and azimuthal velocity components as well as the temperature were simultaneously accessed by means of combined X-wire and cold-wire anemometry. The results indicate a modification of the turbulence structures to that effect that the swirling jet spreads, mixes and evolves faster compared to its non-swirling counterpart. The high correlation between streamwise velocity and temperature fluctuations as well as the streamwise passive scalar flux are even more enhanced due to the addition of swirl, which in turn shortens the distance and hence time needed to mix the jet with the ambient air. The second jet flow part was set out to test the hypothesis put forward by Talamelli & Gavarini (Flow, Turbul. & Combust. 76), who proposed that the wake behind a separation wall between two streams of a coaxial jet creates the condition for an absolute instability. The experiments confirm the hypothesis and show that the instability, by means of the induced vortex shedding, provides a continuous forcing mechanism for the control of the flow field. The potential of this passive mechanism as an easy, effective and practical way to control the near-field of interacting shear layers as well as its effect towards increased turbulence activity has been shown. The third part of the jet flow studies deals with the hypothesis that so called oblique transition may play a role in the breakdown to turbulence for an axisymmetric jet.For wall bounded flows oblique transition gives rise to steady streamwise streaks that break down to turbulence, as for instance documented by Elofsson & Alfredsson (J. Fluid Mech. 358). The scenario of oblique transition has so far not been considered for jet flows and the aim was to study the effect of two oblique modes on the transition scenario as well as on the flow dynamics. For certain frequencies the turbulence intensity was surprisingly found to be reduced, however it was not possible to detect the presence of streamwise streaks. This aspect must be furher investigated in the future in order to understand the connection between the turbulence reduction and the azimuthal forcing. The boundary layer part of the thesis is also threefold, and uses both new data as well as data from various data bases to investigate the effect of certain limitations of hot-wire measurements near the wall on the mean velocity but also on the fluctuating streamwise velocity component. In the first part a new set of experimental data from a zero pressure-gradient turbulent boundary layer, supplemented by direct and independent skin friction measurements, are presented. The Reynolds number range of the data is between 2300 and 18700 when based on the free stream velocity and the momentum loss thickness. Data both for the mean and fluctuating streamwise velocity component are presented. The data are validated against the composite profile by Chauhan et al. (Fluid Dyn. Res. 41) and are found to fulfil recently established equilibrium criteria. The problem of accurately locating the wall position of a hot-wire probe and the errors this can result in is thoroughly discussed in part 2 of the boundary layer study. It is shown that the expanded law of the wall to forth and fifth order with calibration constants determined from recent high Reynolds number DNS can be used to fix the wall position to an accuracy of 0.1 and 0.25 l_ * (l_* is the viscous length scale) when accurately determined measurements reaching y+=5 and 10, respectively, are available. In the absence of data below the above given limits, commonly employed analytical functions and their log law constants, have been found to affect the the determination of wall position to a high degree. It has been shown, that near-wall measurements below y+=10 or preferable 5 are essential in order to ensure a correctly measured or deduced absolute wall position. A  number of peculiarities in concurrent wall-bounded turbulent flow studies, was found to be associated with a erroneously deduced wall position. The effect of poor spatial resolution using hot-wire anemometry on the measurements of the streamwise velocity is dealt with in the last part. The viscous scaled hot-wire length, L+, has been found to exert a strong impact on the probability density distribution (pdf) of the streamwise velocity, and hence its higher order moments, over the entire buffer region and also the lower region of the log region. For varying Reynolds numbers spatial resolution effects act against the trend imposed by the Reynolds number. A systematic reduction of the mean velocity with increasing L+ over the entire classical buffer region and beyond has been found. A reduction of around 0.3 uƬ, where uƬ is the friction velocity, has been deduced for L+=60 compared to L+=15. Neglecting this effect can lead to a seemingly Reynolds number dependent  buffer or log region. This should be taken into consideration, for instance, in the debate, regarding the prevailing influence of viscosity above the buffer region at high Reynolds numbers. We also conclude that the debate concerning the universality of the pdf within the overlap region has been artificially complicated due to the ignorance of spatial resolution effects beyond the classical buffer region on the velocity fluctuations. / QC 20100820

Page generated in 0.0808 seconds