• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 14
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 270
  • 270
  • 195
  • 178
  • 151
  • 140
  • 31
  • 30
  • 24
  • 18
  • 15
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Space air-conditioning of mechanically-ventilated rooms : computation of flow and heat transfer

Mohammad, W. S. January 1986 (has links)
Computational studies of two- and three-dimensional, turbulent recirculating flows within mechanically-ventilated enclosures are reported. Two principal cases are examined: (i) two-dimensional offset jets: and (ii) three-dimensional flow induced in rooms by supply jets emanating from low or high side-wall registers. The calculations were undertaken using iterative finite-domain proceedures which solve the conservation equations for mass, momentum and enthalpy, together with additional transport equations for the turbulent kinetic energy and its dissipation rate . The effect of buoyancy waS. explicitly accounted for when modelling these equations, in order that they could be employed to simulate buoyant flow in ventilated rooms. Computations of the mean velocity, temperature and convective heat transfer distribution are reported, and compared with experimental data where available. A modified version of the two-dimensional elliptic code of Pun and Spalding (1977) was employed to simulate the offset jet case. These involve the discharge of a turbulent jet parallel to a flat surface and eventually attaching to it. The investigations covered a wide range of offset ratio (3.5-32.4). and the computed flow properties are compared with measurements from several sources. These comparisons show good agreement downstream of the reattachment point, while some discrepancies are evident upstream from this location. The differences therefore occur mainly in the recirculating flow region, and are believed to arise from shortcoming in the starting profiles, the turbulance model and the treatment of the near-wall flow. A three-dimensional elliptic finite-domain code was developed to simulate the complex, jet-induced flow within rectangular enclosures. The code was verified using both laminar and turbulent flow test cases on simpler geometries. Comparisons with the measurements and predictions reported by previous researchers were employed for this purpose. Subsequentlyr the ventilated room simulations were undertaken using three different ventilation arrangements with thermal conditions corresponding to isothermall non-buoyant (constant property) and buoyancy'affected flows. The computations were again compared with experimental and numerical predictions of previous researchers. This comparison displayed generally good agreement with these sources. A study of the flow and convective heat exchange within a warm-air heated rom, for which buoyancy effects are significant# is also reported in a bound paper (Alamdari, Hammonda nd Mohammad, 1986) for three different heat loads. Its aim to assess the balance between accuracy and economy provided by the present higher-level method compared with the intermediate-level convection model of Alamdari and Hammond (1982) when used to supply building thermal simulation programs with accurate convection heat transfer data. The computed results of both models were compared, and indicate that the intermediate-level is a valuable alternative source that can satisfy the needs of building thermal modellers. It provides resonable accuracy at a very modest cost in computing terms.
182

Some aspects of the use of water-filled heat stores in gas-fired central-heating systems

Tanton, D. M. January 1986 (has links)
Water-filled heat stores present a convenient, relatively inexpensive means of optimising the use of diminishing gas stocks for the central-heating of buildings. The British Gas Corporation recently launched a series of central-heating units with storage, for use in the domestic sector, whose benefits include: - reduced boiler size, more efficient boiler operation, load-levelling at the hours of peak gas demand. This thesis is divided into three parts. Part I examines the inherent advantage of a with-storage, domestic, central-heating system over a conventional system, by means of two simple computer-simulation programs. A minimum efficiency advantage of about 5% is anticipated; the variation of this advantage with the values of certain key parameters has been assessed. Part II is an interim report of a full-scale field trial in the commercial sector; a large (3.3m3) store was fitted in the heating system of a London school, and its performance during the first weeks of its operation is presented here. Returning to the domestic sector, Part III presents a study of the use of two integral heat exchangers in the storage vessels of the above domestic units, whereby hot water can be drawn instantaneously. An attempt to optimise this domestic hot-water facility has been made.
183

Convective heat transfer within mechanically-ventilated building spaces

Alamdari, F. January 1984 (has links)
A hierarchy of interacting and interdependent approaches have been developed for calculating internal surface convective heat transfer coefficients within mechanically-ventilated rooms. A 'high-level' computer code is developed for non-bucyant and buoyant flow based on the 'elliptic' code of Pun and Spalding (1977), in which 'upwind' finite-difference approximations to the governing partial-differential equations for continuity, momentum and thermal energy are formulated in terms of 'primitive' pressure-velocity variables. Closure of these time-averaged, elliptic equations is obtained via transport equations for both the turbulence kinetic energy and its dissipation rate. The high-level code solves the difference equations for a predetermined size, staggered grid in an iterative 'line-by-line' manner using a guess-and-correct procedure. An 'intermediate-level' computer code (the ROOM-CHT program) has also been developed for the above purpose, which employs 'informed' estimates of the flow and thermal field based on the known mean flow properties of wall-jets. The corresponding heat transfer distribution across the room surface is calculated using wall-jet profile analysis or improved data correlations for bucyancy-driven convection as appropriate. Caqputations are presented for a room into which air is injected through a low or high side wall register. The supply of air governed by both cyclic and modulating control was examined. The intermediate-level code is advocated as being the most appropriate for meeting the requirements of dynamic building thermal models. This code was verified by comparison with the high-level code and with experimental measurements. The oomputed heat transfer coefficients from the intermediate-level code were found to be in good agreement with that of the high-level code. Both indicate significantly higher values than those which would be obtained from established design guides. These high values suggest errors in building thermal models based on guide data, including substantial under-estimation of preheat times.
184

Theoretical and experimental evaluations of the convective and conductive heat transfers in a domestic hot-water store

Chauvet, L. P. J. January 1991 (has links)
The design of a water based thermal store for use in a domestic central heating system has been investigated theoretically, experimentally and numerically. The transient operation of the store during both the space heating and domestic hot-water modes of operation have been investigated separately. Heat transfer correlations in terms of Nusselt and Rayleigh numbers have been developed in order to predict the natural convection heat transfer coefficient for the outside surface of the horizontal axis finned tube heat exchanger coil located within the store. These heat-transfer correlations can predict the value of the heat transfer coefficient with an accuracy of better than 5% and are in good agreement with existing heat transfer correlations developed for the same geometry of finned tubes and modes of heat transfer. The effect of the water flow rate in the heat exchanger coil on the internal heat transfer coefficient is also investigated. This flow rate should be above 4 litre/minute to achieve a high rate of heat-transfer from the wall of the heat exchanger to the water in the pipe. A detailed investigation of the use of horizontal and vertical baffles to increase the effectiveness of heat delivery in the domestic hot water mode has been carried out. Some improvements can be achieved by the use of a horizontal flat plate located in the middle of the store. This plate, when correctly sized enhances stratification and hence improves the effectiveness of heat recovery. Vertical plate arrangements and a rectangular duct situated around the upper heat exchanger coil were found to be ineffective. However, due to an increased velocity of the water around the heat exchanger, the external heat transfer coefficient of the heat exchanger was increased by 12%. The comparison of experimental observations with computer simulations of the development of the thermocline in the store during the space heating mode of operation showed the presence of a jet in the bottom region of the store at the return inlet. The jet induces a significant amount of mixing in the store which reduces the effectiveness of heat recovery. Correlations in terms of Richardson number and effectiveness of heat delivery have been developed to characterize the effect of this jet. An inlet arrangement designed to achieve a Richardson number exceeding 3 significantly reduces the mixing created by the jet and can increase the amount of heat delivered in the space heating mode by approximately 5%.
185

Natural cooling techniques for buildings

Al-Hinai, Hilal Ali Zaher January 1992 (has links)
Modern development in many Third World countries in the hot regions of the world, have been accompanied by the construction of highly energy-wasteful buildings. The interiors of these buildings have to be mechanically air-conditioned in order to achieve thermal-comfort conditions. The consequence of this, has been the rapid increase in electricity-generating plant capacity to match demand (of which, for example at present in Oman, more than 70% nationally is used for air-conditioning modern, energy inefficient buildings). The aim of this work was to find the most suitable way of stabilising or even reducing the electricity demand in a country like Oman. The first step taken to achieve this aim, was to study and draw out lessons from the vernacular architecture of the different climatic regions in Oman. This has been followed by a literature survey that looks at passive and active natural cooling techniques for buildings in hot climates. Mathematical models were then developed to analyze and compare those passive techniques that are most suitable for an environment like that of Oman. Different ways of reducing the heat gain through the roof were investigated and compared. These include the addition of insulation, shading, air-cooling of the roof when the ambient air temperature is lower than that of the roof, and roof ponds. Roof ponds were found to be the most effective of those techniques analyzed. An improved design of the roof pond (the Water Diode roof pond) that eliminates the need for covering the roof pond during the day and uncovering it at night, was suggested and analyzed. The analysis showed promising results. Mathematical models were also developed to analyze and compare different ways of reducing the heat gain through the walls. These included the use of closed cavities, naturally ventilated cavities, the addition of insulation, and the effect of using brick as compared to concrete block. The analysis suggested that the combination of a Water Diode roof pond and insulated brick wall construction will reduce the heat gain through the envelope of a single room by more than 90%, when compared to a room with un-insulated roof and single-leaf concrete block walls. An empirical validation of the mathematical models was conducted. The results showed a good agreement between the actual and predicted values. An economical analysis of the commonly used roof and wall constructions in Oman, was also conducted. This compared the life-cycle cost of nine different construction techniques, with eight different airconditioning schedules. The result of this analysis showed a clear advantage of using roof insulation, reflective double glazing, and insulated walls with brick outer-leaf and concrete block inner-leaf.
186

Optimal heat transfer design for district-heating and cooling pipelines in air-filled cavities

Babus'Haq, Ramiz F. January 1986 (has links)
District-heating and/or cooling systems are gradually becoming popular all over the world for heating and/or cooling of large premises. Current conventional practice for the DHC underground distribution networks is to place the supply and the return pipelines side-by-side in air-filled trencRe's. However, t present investigation has shown that by optimising the location of the pipelines, the thermal insulation provided by the air around the pipes can be maximised. This is achieved by placing the hot pipeline above the cold one, the exact position depending upon the temperatures involved. For most purposes, it is recommended that the displacement ratio for the hot pipe is to be at -0.7 or -0.08 and that of the cold pipe at 0.05 or 0.67 for district heating or cooling respectively [i. e. the hot and cold pipes being placed in the upper and lower halves of the trench respectively]. Each chapter is presented in such a way that it can be read independently of the others as far as possible.
187

Solar energy for domestic use

Van Zyl, GHC January 2000 (has links)
Thesis (MTech(Chemical engineering))--Cape Technikon, Cape Town, 2000 / The demand for pool heating has increased dramatically over the last few years. This is ascribed to the idea that a swimming pool is expensive and can only be used for four months of the year. Therefore, a need for a relatively inexpensive solar heating system, capable of heating pool water to comfortable temperatures for an extended period, does exist. The least expensive solar heating system for swimming pool heating on the market in South Africa is in the order of R 11000. This is a fixed system, usually mounted on the roof of a house. In order to ensure the safety of minors, a safety net or sail must be installed. This is an additional cost, which approximates R1500, yielding a total cost for safety and heating in the order of R 12500. Copper pipes packed in black material are utilised in these conventional heating systems, and it is the cost of this good heat conductor that makes these units expensive. In this study an alternative pool heating system constructed of PVC was investigated. The system is designed to be flexible, mobile, act as a safety mechanism and absorbs the maximum amount of solar energy available. Dark blue material as opposed to black PVC was selected for aesthetic reasons at the expense of maximum efficiency. The material strength was tested as well as the strength of adhesion. The influence of factors such as exposure to the sun and the effect of water containing chlorine and acid on the material were evaluated. Also, various means of channelling the water through the system for increased efficiency was investigated. A pilot model was constructed and its performance evaluated. It has been concluded that the alternative approach provides effective heating at a lower cost than current systems. Also, the durability of the design was found to be acceptable.
188

Optimising environmental design strategies to improve thermal performance in office buildings in Kenya

Kiamba, Lorna Ndanu January 2016 (has links)
An examination of contemporary office buildings in the warm humid region of Kenya revealed the predominance of highly glazed lightweight buildings that are prone to overheating and rely on costly and unsustainable active climate control systems. In the midst of growing energy demand and a potential deficit in supply, the influx of these poorly designed buildings has intensified the need to explore viable climate-responsive design alternatives suitable to local conditions that can extend occupant comfort and reduce the need for energy intensive environmental control systems. This view is shared by the Kenyan government which has set ambitious targets to develop and enforce national codes for energy efficiency and conservation in buildings by 2030. However, despite the clear and urgent need, research shows that little work has been developed to date that can be applied to the Kenyan context and climate. In this research, ways of improving the thermal comfort and performance of office buildings in the warm humid city of Mombasa (latitude 4°S) were explored. The work was developed through a series of field studies of local vernacular and modern case study buildings and subsequent computer simulations. From this, vernacular Swahili-inspired design strategies were derived and the application of the potentially most significant mitigation strategy to typical local office buildings examined further. Although other work exists elsewhere that may be comparable to parts of this study, this is the first effort that brings together the post occupancy evaluation of buildings in Mombasa, a thorough investigation of the effectiveness of the vernacular strategies found in Swahili architecture, and the validation of the application of these strategies to modern offices. Initial findings derived from a parametric study revealed external shading to be the most effective design strategy as it alleviated solar heat gain transmitted through glazing into buildings, resulting in a significant reduction in discomfort hours. Subsequently, using a series of dynamic computer simulations run for a typical office building in Mombasa, the average monthly solar heat gain coefficient (SHGC) values were derived for a typical year. These previously unavailable latitude (and hemisphere) specific solar path indices were deemed critical in the provision of essential data for effective external shading device design. The findings indicated that low SHGC values of under 0.5 gave the general indication of low percentage of discomfort hours (under 10%). Additionally, estimates of potential annual cooling energy savings of up to 60% were made based on the reduction of SHGC values for shading elements of practicable size. The application of these study findings to two local office buildings revealed that the derived SHGC values and energy estimates provide useful references when considered for similar type office buildings on similar latitudes. For both buildings, it was predicted that energy savings of 15% to 61% could be achieved from the application of suitably sized external shading devices. It was suggested that this type of information would encourage designers to use external shading devices as a method of maintaining thermal comfort, conserving energy and lowering operating costs in office buildings. Finally, recommendations for the incorporation of minimum shading standards in building regulations have been made and presented in a design guidance document.
189

Natural ventilation and cooling by evaporation in hot-arid climates

Aboul Naga, Mohsen M. January 1990 (has links)
In hot climates, outside air is too hot during the day. In hot arid climates, low humidity increases discomfort. For comfort, hot air should be cooled before flowing into dwellings and moisture in the moving air increased. For the poor, comfort must be sought cheaply. In places without electricity only 'natural' ventilation is feasible. The air temperature difference between the sunny and the shaded side of a building can be exploited to promote ventilation. Ventilation cooling can be enhanced with an 'evaporative cooling cavity' attached to a dwelling on its shaded side. The cavity has a top external inlet and a bottom internal outlet, and incorporates one or two wet partitions. The air within the cavity, being moist. descends. drawing the outside warm and dry air into the cavity. Evaporation cools the air and raises its humidity. The cool incoming air will reduce inside air temperature and improve comfort. The performance of a typical cavity to induce cooling ventilation by evaporation was investigated theoretically and experimentally with a full scale model. The temperature drop. velocity and relative humidity of the air were measured. The pattern of the air flow in the cavity was observed. The optimum dimensions of the cavity were established. Buoyancy air flow and fan-assisted air flow were analysed in the steady state. Since a convective heat transfer coefficient for air flowing between two parallel vertical surfaces was not found in the literature, appropriate convective heat and surface mass transfer coefficients were derived from measurements. The results show the convective heat transfer coefficient to be independent of the separation of the wet surfaces, and that with separation greater than 3Omm, each wet surface behaves as a 'free' surface. The optimum separation between wet surfaces was assessed, and the water removed by evaporation was determined, and found to be small. The Admittance Method was used to assess comfort. Ventilation and evaporation effectiveness were evaluated. An outlet air velocity of O.3m/s accompanied with a temperature drop of about 6K was achieved. Design proposals for hot arid climates are offered.
190

A framework for HVAC control at a tertiary institution

Britz, Eugene Andrew 10 November 2005 (has links)
Most utility's and electricity resellers stimulate changes in their load shape through various demand side management activities. The most common way of altering their load shape is through the implementation of different tariff structures. The thesis investigates the effect of combining hot water load control with heating ventilation and air-conditioning load control to reduce the electricity costs due to a demand tariff that is a direct result of demand side management. The entire study is focused on the demand tariff of the University of Pretoria. Although the study was done on the University of Pretoria the methods developed are universal and can be implemented in any situation where hot water load control and heating ventilation and air-conditioning load control are to be combined. The study presents a detailed literature study on the current developments in the field of hot water and heating ventilation and air-conditioning load control. No current work could be found in which the two control methods are combined. Models were developed for controlling the electricity load and for determining the savings. The heating ventilation and air-conditioning load's and the hot water load's uncontrolled load models respectively had a mean absolute percentage errors of 3.83% and 3.2%. The forecasting method used to determine the available energy for pre-cooling and the start time of shedding had a mean absolute error of 3.2%. A case study of the University of Pretoria was done. The effect of using only hot water load control is presented. The case study was expanded to include structural thermal energy storage and then water thermal energy storage. This expansion was done using the HV AC system in combination with the hot water load control system. With an only 10.3% contribution to the university's maximum demand, the hot water load control reduced the university's electricity account (energy + demand) by 5.44%. The heating ventilation and air conditioning load contribute to 6% of the university's maximum demand. With the structural thermal energy storage using the heating ventilation and air conditioning system, the savings increased to 6.12%. With the addition of a 750m3 water thermal energy storage tank to the heating ventilation and air-conditioning system, the savings increased to 7.14%. / Dissertation (MEng (Electrical Engineering))--University of Pretoria, 2005. / Electrical, Electronic and Computer Engineering / unrestricted

Page generated in 0.1517 seconds