• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 14
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 270
  • 270
  • 195
  • 178
  • 151
  • 140
  • 31
  • 30
  • 24
  • 18
  • 15
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Glazing system with transparent insulation material for building energy saving and daylight comfort

Sun, Yanyi January 2017 (has links)
Concerns over sustainability in the built environment have resulted in continuous efforts to improve the performance of window system or glazed façade and hence indoor comfort and building energy conservation. An innovative façade system where parallel transparent/translucent plastic slats are sandwiched between glass panes to form a Parallel Slat Transparent Insulation Material (PS-TIM) is proposed as a strategy to effectively reduce heat transfer between the panes of a double glazed window, while maintaining access to daylight. A holistic investigation of the window system with PS- TIMs is conducted in terms of thermal and optical properties, as well as detailed daylight and energy performance predictions of applying PS-TIMs in buildings. Firstly, an experimental investigation is undertaken in a large climate chamber, and the measurement results were used to validate a two-dimensional Computational Fluid Dynamics (CFD) model. Secondly, the validated 2D CFD model is used to solve the dynamic thermal properties of different configurations of PS-TIMs under various environmental conditions. The optical properties (i.e. Bidirectional Scattering Distribution Function (BSDF)) of PS-TIMs are obtained via a ray-tracing technique based on the structures’ geometries and the material optical characteristics of the interstitial structure. The detailed annual daylight performance in different climates and building orientations are predicted using RADIANCE. Finally, the optical and thermal properties obtained from the previous fundamental models are applied in EnergyPlus to predict the energy performance (i.e. heating, cooling and lighting energy consumption) of applying PS-TIMs in buildings in different climates. The investigation results provide a better understanding of the benefits of PS-TIM in terms of energy saving and daylight comfort improvement, as well as offer some tentative suggestions as to how architects and engineers might apply PS-TIM to window system or glazed façade.
212

An automotive carbon dioxide air-conditioning system with heat pump

Böttcher, Christof January 2003 (has links)
The refrigerant circuits of car air-conditioning systems are fitted with so-called open type compressors, because there is only a lip seal preventing the refrigerant from leaking from the compressor housing to the atmosphere. In addition, the cycle uses damping elements between the compressor and the other components on the suction and pressure lines to reduce vibration and noise transfer from the engine to the car body. Both the lip seal and damping elements result in loss of refrigerant as they are made from elastomers and leak with age, and, under high temperature conditions inside the engine room, these elements also allow a relatively high permeation of the refrigerant gas to the atmosphere. With very high refrigerant losses in the older R12 -cooling cycles and the damage caused by this gas to the ozone layer in the stratosphere, the Montreal protocol phased out this refrigerant and the car industry was forced to revert completely to R134a until 1994/95. R134a has no ozone depletion potential, but it has a direct global warming potential, and, therefore, leakages also have to be minimised. R134a has, because of its molecular size, a high permeation potential and, hence, all the refrigerant hoses are lined internally. Unfortunately, these hoses also leak with age and significant refrigerant loss will occur [1] R134a can therefore only be viewed as a solution until an alternative refrigerant with no direct global warming potential has been developed. Candidates for new refrigerants are natural substances such as hydrocarbons or carbon dioxide [2]. Unfortunately, both substances have disadvantages and their use is restricted to special cases, for e.g. hydrocarbons are flammable and are not used in car air-conditioners, but in Germany it is used as a refrigerant in household refrigerators with hermetic cycles. What makes the implementation of carbon dioxide (CO2) difficult are the high system pressures and the low critical point [3].
213

Modelling and intelligent control of vehicle climatronic systems

Sun, Jie January 2009 (has links)
The modelling and control method of a vehicle climatronic system, based on MATLAB/SIMULINK, is presented. In order to achieve high modelling accuracy, a developed simulation model library is introduced. The modelling approach is described and the developed models are validated with some of experimental data obtained. The models are nonlinear, independent of fluid type and based on thermo-dynamic principles. Analysis of the cooling circuit modelling and empirical real-time control models are created by using Fuzzy logic controller and Stateflow. Both of control input and output are implemented essentially at original vehicle CAN-Bus system. Feasible digital automatic control strategy basic to fuzzy theory, hardware and software solution are given. The simulation experiment is achieved with the Hardware-in-Loop technology. This control methodology is easily operated and worth applying for any further studies or methods.
214

A solar climate control system using a water film flow to conserve energy in greenhouses /

Ménard, Odette January 1991 (has links)
No description available.
215

A study of a solar still coupled with a greenhouse.

Tran, Van-Vi January 1974 (has links)
No description available.
216

An overview of guidance notes for the management of indoor air qualityin offices and public places

Chu, Kiu-fung, Truman., 朱喬鋒. January 2001 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
217

Perceived thermal comfort and energy conservation strategies in residential heating

Turner, Carolyn S. January 1985 (has links)
The perception of thermal comfort is an important factor influencing the acceptability of residential heating strategies. The perceived thermal comfort may affect a person's inclination to try a strategy or to use it on a long-term basis. In the study, perceived thermal comfort was assessed in relation to room temperature, humidity, clothing worn, preferred room temperatures, personal control over the temperatures, and energy consumption. The relationships among these variables were examined for five families participating in a live-in study comparing five residential heating strategies. The strategies tested included closing off bedroom vents/doors, setting the thermostat at 65°F, and the use of a solar greenhouse and a woodstove as supplemental heat sources. The families lived in a retrofitted solar test house for a period of four to six weeks. The house was equipped with a computer which monitored 37 channels of information at ten-second intervals and recorded the data hourly. The data collected included temperatures in every room, inside and outside humidity, wind velocity, and other variables that interplay in comfort levels and energy use. The ten adult respondents completed daily and weekly questionnaires containing Likert-type scales of thermal comfort and checklists of clothing worn. The results suggest the following conclusions: 1) the use of a residential setting to measure thermal comfort under varying environmental conditions can be successfully accomplished, 2) psychological variables such as personal control should be considered and tested by persons involved in standards development for the thermal environment, 3) the ability and experience of the persons to use a strategy can affect the achieved energy saving benefits of the strategy, 4) personal preference in the amount of personal effort a person is willing or able to give will impact on the decision on whether to use certain strategies, 5) heating strategies that can produce a direct source of heat or at least some warmer areas were rated higher by the project participants, and 6) weather can play an important role in the effectiveness of the solar greenhouse as a heating source. / Ph. D. / incomplete_metadata
218

Simulation of a building heating, ventilating and air-conditioning system

Botha, C P 03 July 2006 (has links)
Simulation is one of the oldest and also among the most important tools available to engineers. In the building Heating, Ventilating and Air-Conditioning (HVAC) community the availability and/or functionality of simulation tools is limited and it is difficult to determine whether the simulation models accurately represent reality. The purpose of this study was to accurately verify one such a simulation model and then to extend the study to two unique applications. Comprehensive structural, comfort and energy audits were performed to construct a suitable simulation model with the aid of the control simulation package: QUICK Control. The model was then verified against measured building data to ensure an accurate representation of the actual dynamic building response. For the first application various control retrofits were evaluated and the highest potential for energy saving was found. Thereafter the model was implemented to investigate the change in indoor air conditions due to failure of HVAC equipment. Heating, ventilating and air-conditioning in buildings consume a significant portion of the available electrical energy in South Africa. Of this energy up to 30% can be saved by improving the HVAC systems currently installed in the buildings. This could result in savings of up to R400 million. For the building used in this study it was found that up to 66% of the HVAC system’s electrical energy consumption could be saved with a payback period of only 9 months. These savings could be achieved by implementing a setback control strategy with an improved time management procedure. Predicting the impact of failing equipment is a difficult task because of the integrated dynamic effect every HVAC component has on the next. With the aid of a comprehensive integrated simulation model the implications of failing can be determined and necessary assessments and precautions can be taken. The results of this study showed that the air-conditioning system under investigation was approximately 100% over designed. Failure of up to 50% was allowable in the cooling equipment before any noticeable impact could be observed in the indoor climate. With further failure the required comfort conditions could not be sustained. <p The substantial savings calculation and possibility of predicting climate deterioration would not have been possible without the aid of a comprehensive simulation package and model. This study clearly highlights the worth of integrated simulation. / Dissertation (MSc (Mechanical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted
219

Thermal charcteristics of a greenhouse for aquaculture

Branfield, G. R. 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2006. / Successful housing and breeding of exotic animals or plants often requires an environment that is quite different to the ambient conditions present. The current study approached the problem of sub-optimal water temperatures experienced by Central African Bream (Tilapia) housed within a South African greenhouse during winter months. A theoretical and experimental study of fundamental heat and mass transfer processes relevant to an aquacultural greenhouse was conducted. Experimental results were generally in agreement with those of previous researchers; while evaporation tests were found to concur particularly well with an analytical equation developed. The experimental results were used to develop a simple glass greenhouse model to evaluate the expected thermal behaviour during the coldest time of the year. Manipulation of the model revealed that water has the ability to absorb large quantities of solar radiation and regulate temperature fluctuations within such a system, and that the appropriate use of thermal insulation during both the night and day can maintain acceptable water temperatures for extended periods of time. With the conclusions drawn from the experimentation and modelling done, an optimised conceptual greenhouse design was presented, along with associated guidelines and principles for attaining the required water temperatures, and consequently providing the exotic fish specie with a healthy environment.
220

Indoor air quality and HVAC systems in institutional buildings

Tang, Man-wah, Myra, 鄧敏華 January 2002 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management

Page generated in 0.2908 seconds