• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 14
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effects of frost heave on a soil nail wall in Brunswick, Maine /

Duchesnse, Sandra McRae, January 2003 (has links) (PDF)
Thesis (M.S.) in Civil and Environmental Engineering--University of Maine, 2003. / Includes vita. Includes bibliographical references (leaves 164-169).
12

An Experimental Investigation into the Passive Reconfiguration of Flexible Plates Near a Free Surface

Scianna, Nicholas Alexander 26 May 2022 (has links)
Reconfiguration refers to the ability of a flexible structure to change its shape, allowing it to reduce its area perpendicular to the flow, to reduce drag. Decreasing the flexural rigidity of human-made structures can lead to improved designs that operate at higher propulsive efficiencies. The work presented in this thesis examines the physics surrounding a flexible plate under prescribed oscillatory heaving motions. White light movies were recorded at constant frequency and varying proximity to the free surface to investigate the change in reconfiguration as the plate approaches the free surface. Results, analyzed in terms of deformed plate shape, deflection, and plate tip kinematics, found that free surface effects increase the deflection of the plate as the plate approaches the free surface. Expanding on the initial experiments, a variety of frequencies were tested. The results show that each heaving frequency has a different critical height to the free surface in which deep water behavior is distinguished from shallow water behavior. At the critical depth, the plate deflection becomes asymmetric due to free surface effects. The second stage of experiments focused on measuring the fluid loading and fluid flow surrounding the flexible plate. The fluid loading, or drag force, acting on the plate was estimated by using a strain gauge load cell. Results of these experiments found that the drag force is equivalent on plates with lower heaving frequencies when compared to the highest heaving frequency tested due to increased reconfiguration at the higher frequency. The fluid moved from the keel to the edge of the plate as seen in the particle image velocimetry experiments. Higher heaving frequencies created faster fluid flow off the plate and stronger tip vortices being shed from the plate. When the flexible plate operated at large distances from the free surface, the fluid dynamics showed the same behavior for the upstroke and downstroke of the plate. Whereas, when the plate operated close to the free surface, a vortex only forms on the upstroke, leading to asymmetric loading and deformations. / Master of Science / The ability for a structure to bend under loading and return to its original shape after the load is removed presents a desirable characteristic for structural design. The flexibility of the structure can lead to significant weight loss in contrast to rigid structures. In nature, almost all structures are able to bend when faced with fluid forces which decreases the loading the structure has to handle. Decreasing the stiffness of human-made structures can lead to improved designs that operate at higher propulsive efficiencies. The work presented here examines the physics surrounding a flexible plate under prescribed oscillatory heaving motions, which are motions that are purely vertical. White light movies were recorded at constant frequency and varying proximity to the free surface to investigate the change in plate shape as the plate approaches the free surface. Results, analyzed in terms of deformed plate shape, deflection, and plate tip kinematics, found that free surface effects increase the deflection of the plate as the plate approaches the free surface. Expanding on the initial experiments, a variety of frequencies were tested. The results show that each heaving frequency has a different critical height to the free surface in which deep water behavior is distinguished from shallow water behavior. At the critical depth, the plate deflection becomes asymmetric due to free surface effects. The second stage of experiments focused on describing the fluid loading and fluid flow surrounding the flexible plate. The fluid loading, or drag force, acting on the plate was estimated by using a strain gauge load cell. Results of these experiments found that the drag force is equivalent on plates with lower heaving frequencies when compared to the highest heaving frequency tested due to increased reconfiguration at the higher frequency. The fluid moved from the center of the plate to the edge of the plate as seen in the particle image velocimetry experiments, which track the movement of particles in the fluid. Higher heaving frequencies created faster fluid flow off the plate. When the flexible plate operated at large distances from the free surface, the fluid flow showed the same behavior for the upstroke and downstroke of the plate. Whereas, when the plate operates close to the free surface, the fluid flow behaves differently leading to asymmetric loading and deformations.
13

Assessment of the tube suction test for identifying non-frost-susceptible soils stabilized with cement /

Crook, Amy L. January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Civil and Environmental Engineering, 2006. / Includes bibliographical references (p. 45-47).
14

Evaluation of laboratory durability tests for stabilized subgrade soils /

Parker, John Wesley. January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Civil and Environmental Engineering, 2008. / Includes bibliographical references (p. 67-71).
15

Computational Fluid Dynamic Study of Heaving-to

Hickerson, David A. 10 September 2013 (has links)
This study looks at the fluid interactions from the wake of a sail boat performing the heaving-to storm tactic in heavy weather seas with the waves. This interaction causes the wave height in the wake to be reduced. The fluid flow in the top layer of the wave is seen to move with the wake as the hull drifts with the wind. This movement of the top layer of the wave provides a vertical momentum cancelation affect with the portion of the wave that it moves over reducing the wave height. STAR-CCM+ CFD software is used to perform the simulations of the steep waves with wavelength of 25 meters, 55 meters, and 67 meters. In the simulation, a propulsive force is used to simulate the wind force on the boat. / Master of Science
16

Data-driven hydrodynamic models for heaving wave energy converters

Mishra, Virag 30 September 2020 (has links)
Empirical models based on linear and nonlinear potential theory that determine the forces on Wave Energy Converters (WECs) are essential as they can be used for structural, mechanical and control system design as well as performance prediction. In contrast to empirical modelling, Computational Fluid Dynamics (CFD) solves the mass and momentum balance equations for fluid domains. CFD and linear potential theory models represent two extreme in terms of capturing the full range of hydrodynamic effects. These are classified as white box models and the structure of these models is completely derived from first principles understanding of the system. In contrast black box models like a Artificial Neural Networks and Auto-Regressive with, Exogenous Input (ARX), map input and output behaviour of a system without any specific physics based structure. Grey box models do not strictly follow a first principles approach but are based on some observations of relationships between the hydrodynamic effects (e.g. buoyancy force) and system state (e.g. free surface height). The objective of this thesis is to propose a data driven grey box modelling approach, which is computationally efficient compared to high fidelity white box mod- els and still sufficiently accurate for the purpose of determining hydrodynamic forces on heaving WECs. In this thesis, a unique data driven approach that combines features from existing works in modelling of WEC and application of nonlinear hysteretic systems is developed. To that end a CFD based Numerical Wave Tank that could provide the data needed to populate the new modelling framework is used. A hull which hydrodynamically represents a Self Reacting Point Absorbers (SRPAs) with heave plate is subjected to pan-chromatic wave fields and is forced to oscillate concomitantly. The results provide evidence that a SRPA with heave plate exhibits nonlinear relationships with motion parameters including relative position, velocity and acceleration. These parameters show causal relationships with the hydrodynamic force. A simulation methodology to establish confidence in the components of a model framework is developed and the hydrodynamic forces on SRPAs with heave plate and bulbous tank have been analyzed and compared. Two sets of numerical simulation were conducted. Firstly, the WECs were restricted to all degrees of freedom and subjected to monochromatic waves and later the WECs were oscillated at various frequency in a quiescent numerical tank. These results were validated against existing experimental data. Earlier attempts by other authors to develop a data-driven model were limited to simple hulls and did not include rate dependent nonlinearities that develop for heave plates. These studies laid the foundation to current work. The model framework developed in this thesis accounts for the nonlinear relationship between force and parameters like velocity and acceleration along with hysteretic relationship between force and velocity. This modelling framework has a nonlinear static, a hysteresis (Bouc-Wen model) and a dynamic (ARX model) block. In this work the Bouc-Wen model is employed to model the hysteresis effect. Five different models developed from this modelling framework are analyzed; two are state dependent models, while the other three required training to identify dynamic order of model equations. These latter models (Hammerstein, rate dependent Hammerstein and rate dependent KGP models) have been trained and validated for various cases of fixed and oscillating HP cylinder. The results demonstrate significant improvement (max 39%) in prediction accuracy of hydrodynamic forces on a WEC with heave plate, for the model in which a rate dependent hysteresis block is coupled with Hammerstein or KGP models. / Graduate
17

Numerical modeling of a hydrofoil or a marine propeller undergoing unsteady motion via a panel method and RANS

Sharma, Abhinav, master of science in civil engineering 17 February 2012 (has links)
A computational approach to analyze the hydrodynamic performance of a hydrofoil or a marine propeller undergoing unsteady motion has been developed. In order to simulate heave and pitch motion of a hydrofoil, an unsteady boundary element method based modeling is performed. The wake of the hydrofoil is modeled by a continuous dipole sheet and determined in time by applying a force-free condition on its surface. An explicit vortex core model is adapted in this model to capture the rolling up shape and to avoid instability due to roll-up deformation of the wake. The numerical results of the developed model are compared with analytical results and those from the commercial Reynolds-Averaged Navier-Stokes solver (ANSYS/FLUENT). The results show close level of agreement with each other. The problem of flow around a marine propeller performing surge, roll and heave motion in an unbounded fluid is formulated and solved using both a vortex-lattice method and a boundary element method. A fully unsteady wake alignment algorithm is implemented into the vortex-lattice method in order to satisfy the force-free condition on the propeller wake surface. Finally, a comparative study of transient propeller forces on a propeller blade obtained from BEM and VLM (with or without fully aligned wake) is carried out and results are presented. In some cases, results from the presented methods are compared with those from RANS or other numerical methods available in the literature. / text
18

Wave loading on bodies in the free surface using smoothed particle hydrodynamics (SPH)

Omidvar, Pourya January 2010 (has links)
This thesis investigates wave loading on bodies in the free surface using smoothed particle hydrodynamics (SPH). This includes wave loading on fixed bodies, waves generated by heaving bodies in still water and the heave response of a body in waves, representing a wave energy device. SPH is a flexible Lagrangian technique for CFD simulations, which in principle applies to steep and breaking waves without special treatment allowing us to simulate highly nonlinear and potentially violent flows encountered in a real sea. However few detailed tests have been undertaken even with small amplitude waves.This research uses the open-source SPH code SPHysics. First two forms of SPH formulation, standard SPH with artificial viscosity and SPH-Arbitrary Lagrange Euler (ALE) with a Riemann solver, are used to simulate progressive waves in a 2-D tank. The SPH-ALE formulation with a symplectic time integration scheme and cubic spline kernel is found to model progressive waves with negligible dissipation whereas with the standard SPH formulation waves decay markedly along the tank. We then consider two well-defined test cases in two dimensions: progressive waves interacting with a fixed cylinder and waves generated by a heaving semi-immersed cylinder. To reduce computer time in a simple manner a variable particle mass distribution is tested with fine resolution near the body and coarse resolution further away, while maintaining a uniform kernel size. A mass ratio of 1:4 proved effective but increasing to 1:16 caused particle clumping and instability. For wave loading on a half-submerged cylinder the agreement with the experimental data of Dixon et al. (1979) for the root mean square force is within 2%. For more submerged cases, the results show some discrepancy, but this was also found with other modelling approaches. For the heaving cylinder, SPH results for the far field wave amplitude and vertical force on the cylinder show good agreement with the data of Yu and Ursell (1961). The variable mass distribution leads to a computer run time speedup of nearly 200% in these cases on a single CPU. The results of the vertical force and wave amplitude are shown to be quite sensitive to the value of the slope limiter in the Riemann solver for the 2-D heaving cylinder problem. A heaving 2-D wedge or 3-D cone whose oscillatory vertical motion is prescribed as the elevation of a focused wave group is a precise test case for numerical free-surface schemes. We consider two forms of repulsive boundary condition (Monaghan & Kos, 1999, and Rogers et al., 2008) and particle boundary force (Kajtar and Monaghan, 2009) for the 2-D wedge case, comparing the result with the experimental data of Drake et al. (2009). The repulsive boundary condition was more effective than the particle boundary force method. Variable particle mass with different kernel sizes was then tested for 2-D problems for mass ratios of 1:4, 1:16 and 1:4:16 with satisfactory results without particle clumping and instability. For the 3-D cone case, SPH reproduces the experimental results very closely for the lower frequency tested where there is no separation from the bottom surface of the body but for the higher frequencies the magnitudes of force minima were underestimated. The mass ratios of 1:8 and 1:8:27 in two and three nested regions are tested for the 3-D cone problem where a computer run time speedup of nearly 500% is achieved on 16 processors for the mass ratio of 1:8.Finally, the floating body of a heaving wave energy device known as the Manchester Bobber is modelled in extreme waves without power take-off. The results for a single float are in approximate agreement with the experiment.
19

Investigation of the response of groups of wave energy devices

Bellew, Sarah Louise January 2011 (has links)
Placing wave energy devices within close proximity to each other can be beneficial as the costs of deployment, maintenance and infrastructure are reduced significantly compared to if the devices are deployed in isolation. A mathematical model is presented in this thesis which combines linear wave theory with a series of linear driven harmonic oscillators to model an array (group) of floating wave energy devices which move predominantly in heave (vertically) in a train of incident regular waves. Whilst similar mathematical models have been used previously to investigate interactions between fluids and groups of structures, much of the published work does not address array configurations or device constraints that are relevant to designers of structure-supported array devices. The suitability of linear theory for application to closely spaced arrays is assessed in this thesis through comparison to small-scale experimental data and by evaluation of the magnitude of second-order hydrodynamic forces. Values of mechanical damping and mass are determined for each element of an array in order to achieve the maximum power from an array of floats without requiring the knowledge of the motion of every float within the array in order to apply the forces to any one float. Further to this, the analysis of floats of varying geometry is performed in order to assess the possibility of array optimisation through the variation of float geometries within a closely spaced array.It is shown in this thesis that linear theory provides a reasonable prediction of the response of floats that are sufficiently close together to interact for most wave frequencies to which the arrays are likely to be subjected. Under the assumption of easily implementable mechanical damping, it is determined that the power output from an array of floats of equal geometry can be increased by specifying different magnitudes of mechanical damping on each float independently of the radiation damping. Variations in submerged float geometries for the purpose of manipulating array characteristics according to the incident wave frequency are best applied through the variation in draft of a single geometry. Variations in submerged float geometry which occur close to the free surface are found to be of the greatest significance. Where the float is uniform in cross-section, the most appropriate method to select float drafts within an array is found to be based on the evaluation of the total damping on each float.
20

Analysis of unreinforced and reinforced shallow piled embankments subject to cyclic loading

Aqoub, K., Mohamed, Mostafa H.A., Sheehan, Therese 13 January 2019 (has links)
Yes / Reinforced piled embankment technique is becoming increasingly utilised for the construction over soft grounds due to its efficiency on reducing potential settlement, speed of construction and associated cost. Most of previous studies focused on developing understanding for the behaviour of thick embankments that are loaded with a static surcharge load. Data for the behaviour of shallow piled embankments under cyclic loadings are scarce. In this study, an experimental programme was undertaken using a fully instrumented testing rig to generate data and improve our understanding for the behaviour of unreinforced and reinforced shallow piled embankments subject to monotonic and cyclic loadings that were applied over a predetermined area of the embankment. The experimental results showed that collapse of soil arching is imminent and occurs during the first few cycles of load. However, regain of strength and recovery of the arching effect was observable during further stages of cyclic loadings due to densification of the embankment material and deformation of the soft subsoil. Inclusion of reinforcement layers was found to enhance the performance of load transfer mechanisms by concentrating stresses on pile caps. The results clearly showed a significant reduction in surface settlement, soft subsoil settlement and heaving with increasing the number of reinforcement layers.

Page generated in 0.0575 seconds