Spelling suggestions: "subject:"heavily"" "subject:"heavier""
21 |
Artificial Ground Freezingin Clayey Soils : Laboratory and Field Studies of Deformations During Thawing at the Bothnia LineJohansson, Teddy January 2009 (has links)
Artificial ground freezing as a method to temporarily stabilize and create hydraulic sealing in urban as well as in rural areas has been used in a number of Swedish construction projects, particularly during the last decade. One problem with the freezing of soil and rock is that fine-grained clayey types of soils have showed a tendency to under certain circumstances, during the thawing process, create a pore water overpressure and to consolidate, despite a change in the external loading conditions. In certain cases, this condition can be a desired effect as the soil mass after a freeze- and thaw cycle acquires overconsolidated properties. The main objectives of this study are, to describe and review the knowledge and current state of practice of artificial ground freezing, to increase the understanding about the conceptual behaviour for prognosis of the vertical deformation concerning artificial ground freezing and to compare and discuss results from laboratory and field studies concerning vertical deformation during thawing process for Bothnia soil. The field studies and the laboratory tests in this research study have been performed with soil from the freezing of the Bothnia Line in the vicinity of Stranneberget. The Bothnia Line is the railway link between Nyland, north of Kramfors, and Umeå. This thesis relates to a part of the Bothnia Line. It deals with the behaviour of soil during thawing by means of temporary stabilization and hydraulic sealing of fine-grained soil through artificial freezing using brine as the cooling agent. However, the reason behind the problem consists of the final deformations due to the thawing process. The general conclusions of this study are; the Bothnia soil water content decreased in mean approximately 14 % after a freeze-thaw cycle, which approximately corresponds to; wth = 0.8w – 1.5 the decrease of the water content has no correlation to the depth below ground surface, in contrast, there is a strong correlation between the undisturbed soil water content and the magnitude of the decrease in water content the soil liquid limit decreases after a freeze-thaw cycle, simultaneously as the relative share of clay and fine silt grains decreases while the relative share of more coarse grains increases the coarser and denser soil created after a freeze-thaw cycle obtains an increased preconsolidation pressure and an increased undrained shear strength. / QC 20100721
|
22 |
Analysis and development of a three body heaving wave energy converterBeatty, Scott, J. 01 May 2009 (has links)
A relative motion based heaving point absorber wave energy converter is being co-developed by researchers at the University of Victoria and SyncWave Systems Inc. To that end---this thesis represents a multi-faceted contribution to the development effort. A small scale two-body prototype wave energy converter was developed and tested in a wave tank. Although experimental problems were encountered, the results compare reasonably well to the output of a two degree of freedom linear dynamics model in the frequency domain.
A two-body wave energy converter design is parameterized as a basis for an optimization and sensitivity study undertaken to illustrate the potential benefits of frequency response tuning. Further, a mechanical system concept for frequency response tuning is presented. The two degree of freedom model is expanded to three degrees of freedom to account for the tuning system. An optimization procedure, utilizing a Sequential Quadratic Programming algorithm, is developed to establish control schedules to maximize power capture as a function of the control variables. A spectral approach is developed to estimate WEC power capture in irregular waves.
Finally, as a case study, the modeling, optimization, and spectral methods are applied to predict performance for a large scale wave energy converter deployed offshore of a remote Alaskan island. Using archived sea-state data and community electrical load profiles, a wave/diesel hybrid integration with the remote Alaskan community power system is assessed to be technologically feasible.
|
23 |
Viscous Vortex Method Simulations of Stall Flutter of an Isolated Airfoil at Low Reynolds NumbersKumar, Vijay January 2013 (has links) (PDF)
The flow field and forces on an isolated oscillating NACA 0012 airfoil in a uniform flow is studied using viscous vortex particle method. The simulations are carried out at very low chord (c) based Reynolds number (Re=1000), motivated by the current interest in development of Micro Air Vehicles (MAV). The airfoil is forced to oscillate in both heave and pitch at different normalized oscillation frequencies (f), which is represented by the non-dimensional reduced frequency fc/U).( From the unsteady loading on the airfoil, the net energy transfer to the airfoil is calculated to determine the propensity for the airfoil to undergo self-induced oscillations or flutter at these very low Reynolds numbers. The simulations are carried out using a viscous vortex particle method
that utilizes discrete vortex elements to represent the vorticity in the flow field. After validation of the code against test cases in the literature, simulations are first carried out for the stationary airfoil at different angles of attack, which shows the stall characteristics
of the airfoil at this very low Reynolds numbers.
For the airfoil oscillating in heave, the airfoil is forced to oscillate at different reduced frequencies at a large angle of attack in the stall regime. The unsteady loading on the blade is obtained at different reduced frequencies. This is used to calculate the net energy transfer to the airfoil from the flow, which is found to be negative in all cases studied. This implies that stall flutter or self-induced oscillations are not possible under the given heave conditions. The wake vorticity dynamics is presented for the different reduced frequencies, which show that the leading edge vortex dynamics is progressively
more complex as the reduced frequency is increased from small values. For the airfoil oscillating in pitch, the airfoil is forced to oscillate about a large mean angle of attack corresponding to the stall regime. The unsteady moment on the blade is obtained at different reduced frequencies, and this is used to calculate the net energy transfer to the airfoil from the flow, which is found to be positive in all cases studied. This implies that stall flutter or self-induced oscillations are possible in the pitch mode, unlike in the heave case. The wake vorticity dynamics for this case is found to be relatively simple compared to that in heave. The results of the present simulations are broadly in agreement with earlier stall flutter studies at higher Reynolds numbers that show that stall flutter does not occur in the heave mode, but can occur in the pitch mode. The main difference in the present very low Reynolds number case appears to be the broader extent of the excitation region in the pitch mode compared to large Re cases studied earlier.
region in the pitch mode compared to large Re cases studied earlier.
|
24 |
Estudo numérico de unidade flutuante monocoluna para conversão de energia de ondas do mar. / Numeric study of monocolumn floating unit for sea wave energy conversion.Rocha, Thiago Peternella 16 October 2017 (has links)
O uso contínuo de combustíveis fósseis já se mostrou deletério há anos, além de ser um meio energético finito. Por este motivo, a demanda atual e futura por sistemas de energia limpa é grande. Muito embora já existam diversas estruturas dedicadas a extrair energia do mar, o conceito em que se pretende trabalhar é inovador e de tecnologia nacional. Este tema foi desenvolvido inicialmente em uma abordagem teórica pelo então aluno de engenharia naval Daniel Prata Vieira e sua colega Ana Luísa Orsolini, como Trabalho Final do curso de Engenharia Naval e Oceânica da Escola Politécnica da USP, orientados pelo Prof. Dr. André Luis Condino Fujarra. Vieira & Orsolini (2011) [1] abordaram de uma forma diferente o tema de geração de energia por ondas do mar, trazendo à tona o uso da já consagrada plataforma monocoluna - protótipo que rendeu diversos prêmios de inventor do ano da Petrobrás, além de patente, ao Tanque de Provas Numérico, laboratório do departamento de engenharia naval da POLI-USP. O trabalho dos alunos Daniel e Ana também foi reconhecido nacionalmente recebendo o Prêmio Petrobras de Tecnologia 2011 no tema de Tecnologia de Energia. A continuação do trabalho consiste em levar a fundo alguns pontos importantes relacionados ao dimensionamento da plataforma para otimizar a geração de energia através do movimento relativo entre ela e um corpo flutuante interno ao seu moonpool. O objetivo do trabalho é definir melhores geometrias através da parametrização das dimensões principais e da utilização de métodos numéricos num estudo mais detalhado e aprofundado. O método de desenvolvimento leva em conta todos os fatores que influenciam na dinâmica do sistema como a hidrodinâmica de dois corpos (plataforma e corpo interno flutuante) e a dinâmica do gerador de energia (tipo de gerador e seu impacto no amortecimento do sistema global). / The continued use of fossil fuels has proved harmful for years, besides being a means finite energy. For this reason, the current and future demand for clean energy systems are great. Although there are already several structures dedicated to extracting energy from the sea, the concept on which it intends to work is innovative and with local technology. This theme has been already developed in a theoretical approach by the student of naval engineering Daniel Prata Vieira and his classmate Ana Luisa Orsolini, such as Final Paper Course of Naval Architecture and Ocean Engineering from the Escola Politécnica of USP, directed by Prof. Dr. André Luis Condino Fujarra. Vieira \\& Orsolini (2010) [1] studied in a different way the theme of energy generation from ocean waves, bringing up the use of already established monocolumn platform - prototype that earned several inventor of the year from Petrobras awards, besides patent, to the Numerical Offshore Tank, laboratory of the Naval Engineering Department of Poli - USP. The work of students Daniel and Ana was also recognized nationally getting the Petrobras Technology Award 2011 in the Energy Technology theme. The continuation of this work is to bring the background some important points related to platform design to optimize power generation through the relative motion between it and an internal floating body into moonpool. The objective is to define best geometries through the parameterization of the key dimensions and the use of numerical methods in a more detailed and in-depth study. The development method takes into account all the factors that influence the dynamics of the system such as the hydrodynamics of two bodies (platform and floating internal body) and the dynamics of the generator (type of generator and its impact on the damping of the global system).
|
25 |
Estudo numérico de unidade flutuante monocoluna para conversão de energia de ondas do mar. / Numeric study of monocolumn floating unit for sea wave energy conversion.Thiago Peternella Rocha 16 October 2017 (has links)
O uso contínuo de combustíveis fósseis já se mostrou deletério há anos, além de ser um meio energético finito. Por este motivo, a demanda atual e futura por sistemas de energia limpa é grande. Muito embora já existam diversas estruturas dedicadas a extrair energia do mar, o conceito em que se pretende trabalhar é inovador e de tecnologia nacional. Este tema foi desenvolvido inicialmente em uma abordagem teórica pelo então aluno de engenharia naval Daniel Prata Vieira e sua colega Ana Luísa Orsolini, como Trabalho Final do curso de Engenharia Naval e Oceânica da Escola Politécnica da USP, orientados pelo Prof. Dr. André Luis Condino Fujarra. Vieira & Orsolini (2011) [1] abordaram de uma forma diferente o tema de geração de energia por ondas do mar, trazendo à tona o uso da já consagrada plataforma monocoluna - protótipo que rendeu diversos prêmios de inventor do ano da Petrobrás, além de patente, ao Tanque de Provas Numérico, laboratório do departamento de engenharia naval da POLI-USP. O trabalho dos alunos Daniel e Ana também foi reconhecido nacionalmente recebendo o Prêmio Petrobras de Tecnologia 2011 no tema de Tecnologia de Energia. A continuação do trabalho consiste em levar a fundo alguns pontos importantes relacionados ao dimensionamento da plataforma para otimizar a geração de energia através do movimento relativo entre ela e um corpo flutuante interno ao seu moonpool. O objetivo do trabalho é definir melhores geometrias através da parametrização das dimensões principais e da utilização de métodos numéricos num estudo mais detalhado e aprofundado. O método de desenvolvimento leva em conta todos os fatores que influenciam na dinâmica do sistema como a hidrodinâmica de dois corpos (plataforma e corpo interno flutuante) e a dinâmica do gerador de energia (tipo de gerador e seu impacto no amortecimento do sistema global). / The continued use of fossil fuels has proved harmful for years, besides being a means finite energy. For this reason, the current and future demand for clean energy systems are great. Although there are already several structures dedicated to extracting energy from the sea, the concept on which it intends to work is innovative and with local technology. This theme has been already developed in a theoretical approach by the student of naval engineering Daniel Prata Vieira and his classmate Ana Luisa Orsolini, such as Final Paper Course of Naval Architecture and Ocean Engineering from the Escola Politécnica of USP, directed by Prof. Dr. André Luis Condino Fujarra. Vieira \\& Orsolini (2010) [1] studied in a different way the theme of energy generation from ocean waves, bringing up the use of already established monocolumn platform - prototype that earned several inventor of the year from Petrobras awards, besides patent, to the Numerical Offshore Tank, laboratory of the Naval Engineering Department of Poli - USP. The work of students Daniel and Ana was also recognized nationally getting the Petrobras Technology Award 2011 in the Energy Technology theme. The continuation of this work is to bring the background some important points related to platform design to optimize power generation through the relative motion between it and an internal floating body into moonpool. The objective is to define best geometries through the parameterization of the key dimensions and the use of numerical methods in a more detailed and in-depth study. The development method takes into account all the factors that influence the dynamics of the system such as the hydrodynamics of two bodies (platform and floating internal body) and the dynamics of the generator (type of generator and its impact on the damping of the global system).
|
Page generated in 0.062 seconds