• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 45
  • 45
  • 23
  • 22
  • 20
  • 19
  • 12
  • 12
  • 10
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Public perceptions of wave energy on the Oregon coast /

Hunter, Daniel A. January 1900 (has links)
Thesis (M.A.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 164-169). Also available on the World Wide Web.
2

An Analysis of Ocean Wave Energy Acquisition System: Optimization of Energy Generation and Analysis of Vibration Reduction

Huang, Guan-Chih 03 September 2008 (has links)
This thesis is to develop a new ocean-wave-energy acquisition system. This system is composed of a float plate, a buoy, a nearly resonant vibrator, a dynamotor, and an oil pressure system. The whole system can be divided into two sub-systems by its function: energy generation system or vibration reduction system. Each of them can generate energy from ocean wave and reduce the vibration of flow plate. After simplifying the dynamic model and optimization analysis, we will discuss with the influence of parameters on the amount of energy and the vibration reduction. Energy generation system want to the maximum power by optimizing system parameters (mass of the buoy, mass of the nearly resonant vibrator, the coefficient of spring, and the coefficient of generator). Here we will use four kinds of optimization methods. In the first three methods, we want to find the suitable parameters to make system to generate the maximum power at an operation of frequency wave. These three methods are different from the request of the relation phase of displacement between the buoy and the nearly resonant vibrator. The fourth method, we want to find the parameters of system, which can generate power evenly at each of frequency in a range of frequency wave motion. The work is done by searching for minimum variance of power. Vibration reduction system can reduce the vibration of float plate by optimizing parameter. After simplifying and making some assumptions, system can be simplified approximately to a vibration absorber at a specific frequency. There is no displacement at that frequency, but there are displacements on the other frequency of the operation range. In order to let system to apply properly in a range of frequency, we find the minimum one that is the maximum displacement in the range of frequency. After optimization design, we can get each result from these two sub-systems. From the first three methods of energy generation system, all energy distributes on the around of operation frequency. There are no frequencies on the others of the operation range. Moreover, the displacement of each body in this system is too large to apply. By the fourth method, energy-frequency curve is evenly on the operation range. Overall, the average of energy is larger than that of frequency of system whose design concept from first three methods. The displacements of each body in this system are small enough to apply. In vibration reduction system, we search the parameters in the optimization methods. The results show that vibration reduction just occurs around the operation frequency and the others in the range not
3

Ocean electric energy extraction opportunities /

Zhang, Heng. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2004. / Printout. Includes bibliographical references (leaf 47). Also available online.
4

The impact of large scale wave energy converter farms on the regional wave climate

Greenwood, Charles January 2016 (has links)
No description available.
5

Wave energy converter performance modeling and cost of electricity assessment a thesis /

Jarocki, Dmitri. Crockett, Robert S. January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2010. / Title from PDF title page; viewed on May 15, 2010. Major professor: Robert S. Crockett, Ph.D. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree [of] Master of Science in Engineering." "March 2010." Includes bibliographical references (p. 64-65).
6

A resource assessment of Southeast Florida as related to ocean thermal energy

Unknown Date (has links)
An assessment of the thermal resource in the Straits of Florida was performed to estimate the Ocean Thermal Energy Conversion (OTEC) potential. Direct measurements of the temperature profile across the Florida Straits were taken from nearshore Southeast Florida to the Exclusive Economic Zone boundary along four evenly spaced transects perpendicular to Florida's Southeast coast, spanning 160 km. Along the southern transects in summer, nearshore cold and warm water resources meet or exceed the average 20ÀC temperature difference required for OTEC. In winter, the nearshore average DT of 17.76ÀC can produce 59-75% design net power and 70-86% in spring with DT averaging 18.25ÀC. Offshore along the southern transects, a high steady DT from 18.5- 24ÀC creates an annual average net power of 120-125MW. Along the northern transects, the nearshore resource does not exist, but a consistent OTEC resource is present offshore, providing 70-80% design net power in winter, and 100-158% in spring and summer. / by Anna E. Leland. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
7

Global distribution of ocean thermal energy conversion (OTEC) resources and applicability in U.S. waters near Florida

Unknown Date (has links)
The following study explores the worldwide spatial and temporal distributions of electrical power that can be extracted from the ocean's stored solar energy via the process of closed-cycle ocean thermal energy conversion (OTEC). Special emphasis is placed on resources surrounding the state of Florida. The study combines oceanographic input from a state-of-the-art ocean circulation model, the Hybrid Coordinate Ocean Model, with a state-of-the-industry OTEC plant model to predict achievable power values across the world. These power predictions are then constrained by local replenishment rates of cold deep sea water to provide an upper limit to the sustainable OTEC resource. Next, the geographic feasibility of OTEC-coupled and OTEC-independent sea water cooling (air conditioning and refrigeration) are explored. Finally, the model data is validated against in situ oceanic measurements to ensure the quality of the predictions. / by Lynn Rauchenstein. / Thesis (M.S.C.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
8

Quantification of uncertainty in sub-sea acoustic measurement, and validation of wave-current kinematics, at a tidal energy site

Crossley, George Robert Northcote January 2018 (has links)
As developers seek to convert the energy of the tides into electricity, sub-sea turbines must be designed to perform well in increasingly harsh conditions. Such energetic seas have historically been avoided, hence measurements taken below the surface in strong tidal currents and large waves are relatively few, and the theory behind these interactions is underdeveloped. This thesis compares measurements of subsurface velocity taken in the field, at a UK site proposed for development, to the velocity outputs of a model capable of combining waves and currents in a number of ways. In particular the interaction between waves and currents is investigated. The methodology incorporates a novel virtual velocity measurement instrument to measure the model flow, replicating the physical instruments used at sea, such that direct comparisons can be made between the two data-sets. Model and field velocities show good agreement across a range of current speeds and wave heights, with a range of metrics used to demonstrate the suitability of the model, based on linear wave-current theory, for this site. The wave-current interaction module is calibrated, with linear superposition of wave and current velocities proving a suitable representation of field velocities. Calculation of a dispersion relationship affected by mean current velocity marginally improves calibration with field data. Analysis of other sites using the tools developed will further validate this type of model, which in combination with blade element momentum theory, is able to predict pre-construction site specific loads on tidal turbines. Doppler Current Profilers (DCPs) are able to measure subsurface water particle kinematics and sea surface elevation simultaneously, however assumptions made by these instruments jeopardise detail when recording in highly energetic seas, particularly where waves and turbulent tidal currents combine. Models developed to optimise the design of tidal turbines require correct site specific inputs to accurately reflect the conditions that a turbine may encounter through its lifetime, moreover, the kinematics of these models must be accurately validated. To overcome the limitations in DCP measurements a 'Virtual' Doppler Current Profiler (VDCP) is developed (Crossley et al. 2017), enabling quantification of error in site characteristics, and 'like for like' comparisons of field and model kinematics that has never previously been documented. The numerical model developed incorporates tidal currents, waves and turbulence combined linearly to output subsurface velocity based on conditions from the field which have been averaged over ten minute intervals. The inputs are simple, time averaged characteristics (current magnitude, direction, and profile; wave height, period and direction, turbulence intensity and turbulence length-scale) and the model outputs velocities over a two dimensional grid that develops with time. The VDCP samples this flow as if it were the very instrument in the field that recorded the data used for validation. Taking into account the heading, pitch and roll of the instrument a data set directly comparable to that measured in the field is generated. The VDCP is initially used in quantifying error in wave and turbulence statistics, demonstrating a phase dependency of velocity measurements averaged between beams and providing a theoretical error for wave and turbulence characteristics sampled under a range of conditions, in order to improve tidal site characterisation. Spectral moments of the subsurface longitudinal wave orbital velocities recorded by the VDCP can be between 0.1 and 9 times those measured at a point for certain turbulent current conditions, turbulence intensity measurements may vary between 0.2 and 1.5 times the input value in low wave conditions and turbulence length scale calculations can vary by over ten times the input value, dependent on both current and wave conditions. The methodology can be used to determine a theoretical error in any site characterisation parameter for any set of wave, current and turbulence conditions. Results of the model validation using the VDCP show that the tidal flow model, and in particular the newly developed wave-current interaction module, is effective in simulating field subsurface velocities over a range of depths, for waves of up to 3m significant wave height and currents of up to 3.5ms-1. The model is effective in reproducing the wave climate using both measured and modelled surface elevation spectra, and tests, with marginal improvements, the effect of modifying the dispersion equation to account for currents. Field and model velocities compare well over the frequency range dominated by waves, showing only small underestimations in model standard deviations with respect to those from field data, at depths close to the sea surface. At the low frequency end of the modelled spectra, where large turbulent eddies dominate, there is some deviation in model accuracy, particularly during the ebb tide where recorded turbulence parameters are extremely variable, creating uncertainty due to a relatively small sample size. Between field and model velocity maxima, some scatter is observed, potentially providing uncertainty in the estimation of ultimate loads. Model and field damage equivalent velocities, used in the determination of fatigue loads, agree well. Results suggest that a linear wave-current representation of subsurface velocities at this particular tidal site is applicable. Care should be taken when interpreting this result due to the relatively small sample size, and the possibility of site specific nuances, and as such further studies are proposed. The Virtual DCP model is a novel development which has proven its usefulness in the work contained in this thesis and in the analysis of commercial field data. It is extremely versatile, adapting to a range of configurations and set up criteria such that it can be used in the quantification of DCP measurement error for a range of flow characteristics. This information is useful in the design of tidal turbines (and other sub-sea structures) as well as for oceanographic and biological processes. The tidal flow model developed extends beyond the capability of similar numerical models with the capability to model the interaction between waves and currents according to a number of different options. Combined with the VDCP, which samples from the model flow field, a system is created that can be effectively calibrated to find the best model solution to replicate flows at a tidal site measured by a 'real' DCP over a broad range of sea conditions and water depths. The purpose is to ensure that models used to predict the sub surface velocities in the field are suitable and a key question was to understand whether the linear super-position of linear wave models and a turbulent current flow provides a realistic model of the particle kinematics with a view to undertaking loads analysis of a tidal stream turbine. Comparisons of this kind have not previously been documented, and this thesis lays out the path to improved site characterisation.
9

Limitations on tidal-in-stream power generation in a strait

Atwater, Joel 05 1900 (has links)
In the quest to reduce the release of carbon dioxide to limit the effects of global climate change, tidal-in-stream energy is being investigated as one of many possible sustainable means of generating electricity. In this scheme, turbines are placed in a tidal flow and kinetic energy is extracted. With the goal of producing maximum power, there is an ideal amount of resistance these turbines should provide; too little resistance will not a develop a sufficient pressure differential, while too much resistance will choke the flow. Tidal flow in a strait is driven by the difference in sea-level along the channel and is impeded by friction; the interplay between the driving and resistive forces determines the flow rate and thus the extractible power. The use of kinetic energy flux, previously employed as a metric for extractible power, is found to be unreliable as it does not account for the increased resistance the turbines provide in retarding the flow. The limits on extraction from a channel are dependant on the relationship between head loss and velocity. If head loss increases with the square of the velocity, a maximum of 38% of the total fluid power may be extracted; this maximum decreases to 25\% if head loss increases linearly with velocity. Using these values, the estimated power potential of BC's Inside Passage is 477MW, 13% of previous assessments. If a flow has the ability to divert through a parallel channel around the installed turbines, there are further limits on production. The magnitude of this diversion is a function of the relative resistance of impeded and diversion channels. As power extraction increases, the flow will slow from its natural rate. This reduction in velocity precipitously decreases the power density the flow, requiring additional turbine area per unit of power. As such, the infrastructure costs per watt may rise five to eight times as additional turbines are installed. This places significant economic limitations on utility-scale tidal energy production.
10

Limitations on tidal-in-stream power generation in a strait

Atwater, Joel 05 1900 (has links)
In the quest to reduce the release of carbon dioxide to limit the effects of global climate change, tidal-in-stream energy is being investigated as one of many possible sustainable means of generating electricity. In this scheme, turbines are placed in a tidal flow and kinetic energy is extracted. With the goal of producing maximum power, there is an ideal amount of resistance these turbines should provide; too little resistance will not a develop a sufficient pressure differential, while too much resistance will choke the flow. Tidal flow in a strait is driven by the difference in sea-level along the channel and is impeded by friction; the interplay between the driving and resistive forces determines the flow rate and thus the extractible power. The use of kinetic energy flux, previously employed as a metric for extractible power, is found to be unreliable as it does not account for the increased resistance the turbines provide in retarding the flow. The limits on extraction from a channel are dependant on the relationship between head loss and velocity. If head loss increases with the square of the velocity, a maximum of 38% of the total fluid power may be extracted; this maximum decreases to 25\% if head loss increases linearly with velocity. Using these values, the estimated power potential of BC's Inside Passage is 477MW, 13% of previous assessments. If a flow has the ability to divert through a parallel channel around the installed turbines, there are further limits on production. The magnitude of this diversion is a function of the relative resistance of impeded and diversion channels. As power extraction increases, the flow will slow from its natural rate. This reduction in velocity precipitously decreases the power density the flow, requiring additional turbine area per unit of power. As such, the infrastructure costs per watt may rise five to eight times as additional turbines are installed. This places significant economic limitations on utility-scale tidal energy production.

Page generated in 0.1362 seconds