• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The measurement of structural wave intensity applied to buildings

Ming, Ruisen January 1993 (has links)
No description available.
2

An Analysis of Ocean Wave Energy Acquisition System: Optimization of Energy Generation and Analysis of Vibration Reduction

Huang, Guan-Chih 03 September 2008 (has links)
This thesis is to develop a new ocean-wave-energy acquisition system. This system is composed of a float plate, a buoy, a nearly resonant vibrator, a dynamotor, and an oil pressure system. The whole system can be divided into two sub-systems by its function: energy generation system or vibration reduction system. Each of them can generate energy from ocean wave and reduce the vibration of flow plate. After simplifying the dynamic model and optimization analysis, we will discuss with the influence of parameters on the amount of energy and the vibration reduction. Energy generation system want to the maximum power by optimizing system parameters (mass of the buoy, mass of the nearly resonant vibrator, the coefficient of spring, and the coefficient of generator). Here we will use four kinds of optimization methods. In the first three methods, we want to find the suitable parameters to make system to generate the maximum power at an operation of frequency wave. These three methods are different from the request of the relation phase of displacement between the buoy and the nearly resonant vibrator. The fourth method, we want to find the parameters of system, which can generate power evenly at each of frequency in a range of frequency wave motion. The work is done by searching for minimum variance of power. Vibration reduction system can reduce the vibration of float plate by optimizing parameter. After simplifying and making some assumptions, system can be simplified approximately to a vibration absorber at a specific frequency. There is no displacement at that frequency, but there are displacements on the other frequency of the operation range. In order to let system to apply properly in a range of frequency, we find the minimum one that is the maximum displacement in the range of frequency. After optimization design, we can get each result from these two sub-systems. From the first three methods of energy generation system, all energy distributes on the around of operation frequency. There are no frequencies on the others of the operation range. Moreover, the displacement of each body in this system is too large to apply. By the fourth method, energy-frequency curve is evenly on the operation range. Overall, the average of energy is larger than that of frequency of system whose design concept from first three methods. The displacements of each body in this system are small enough to apply. In vibration reduction system, we search the parameters in the optimization methods. The results show that vibration reduction just occurs around the operation frequency and the others in the range not
3

Determination of Frequency-Based Switch Triggers for Optimal Vibration Reduction via Resonance Frequency Detuning

Lopp, Garrett 01 January 2015 (has links)
Resonance frequency detuning (RFD) is a piezoelectric-based vibration reduction approach that applies to systems experiencing transient excitation through the system*s resonance—for example, turbomachinery experiencing changes in rotation speed, such as on spool-up and spool-down. This technique relies on the inclusion of piezoelectric material and manipulation of its electrical boundary conditions, which control the stiffness of the piezoelectric material. Resonance frequency detuning exploits this effect by intelligently switching between the open-circuit (high stiffness) and short-circuit (low stiffness) conditions as the excitation approaches resonance, subsequently shifting the natural frequency to avoid this resonance crossing and limit the response. The peak response dynamics are then determined by the system*s sweep rate, modal damping ratio, electromechanical coupling coefficient, and, most importantly, the trigger (represented here in terms of excitation frequency) that initiates the stiffness state switch. This thesis identifies the optimal frequency-based switch trigger over a range of sweep rates, damping ratios, and electromechanical coupling coefficients. With perfect knowledge of the system, the optimal frequency-based switch trigger decreases approximately linearly with the square of the coupling coefficient. Furthermore, phase of vibration at the time of the switch has a very small effect; switching on peak strain energy is marginally optimal. In practice, perfect knowledge is unrealistic and an alternate switch trigger based on an easily measurable parameter is necessary. As such, this thesis also investigates potential methods using the open-circuit piezoelectric voltage response envelope and its derivatives. The optimal switch triggers collapse to a near linear trend when measured against the response envelope derivatives and, subsequently, an empirical control law is extracted. This control law agrees well with and produces a comparable response to that of the optimal control determined using perfect and complete knowledge of the system.
4

Vibration Reduction Using Command Generation in Formation Flying Satellites

Biediger, Erika A. Ooten 18 April 2005 (has links)
The precise control of spacecraft with flexible appendages is extremely difficult. The complexity of this task is magnified many times when several flexible spacecraft must be controlled precisely and collaboratively, as in formation flying. Formation flying requires a group of spacecraft to fly in a desired trajectory while maintaining both relative positions and velocities with respect to each other. This work enhances two current state-of-the-art formation flying algorithms, specifically leader-follower and virtual-structure architectures. First, a flexible satellite model is integrated into each of these architectures. Second, input shaping is used to generate the satellites desired trajectories, thereby enhancing the performance of the system. This dissertation addresses key issues regarding the application of command generation techniques to flexible satellites controlled with formation flying control architectures. The temporal tracking and the trajectory tracking of each architecture are examined as well as the vibration characteristics of the formation satellites. Design procedures for applying trajectory shaping for the leader-follower and virtual-structure architecture are developed. Experiments performed on a flexible satellite testbed verify key simulated results.
5

TOPOLOGY DESIGN OPTIMIZATION FOR VIBRATION REDUCTION: REDUCIBLE DESIGN VARIABLE METHOD

KIM, SUN YONG 11 July 2011 (has links)
Structural topology optimization has been extensively studied in aeronautical, civil, and mechanical engineering applications in order to improve performance of systems. This thesis focuses on an optimal design of damping treatment using topology optimization, and the reduction of computational expense of the topology optimization procedure. This thesis presents mainly two works on topology optimization. In the first work, topology optimization is implemented to optimally design damping treatments in unconstrained-layer damping material. Since the damping effect relies on the placement of damping treatment, and the weight of damping material may be an important factor, the placement of damping material is optimally determined using topology optimization with an allowable maximum. Unconstrained-layer plate and shell structures are modeled. The damping layer on the unconstrained-layer structures is considered as the design domain. Using topology optimization, the damping layer is designed numerically, and then experimentally validated by comparing the damping effects. In the numerical example, the topological damping treatment usually provides much higher damping effects compared to other approaches such as strain energy distribution (SED) and an evolutionary structural optimization (ESO). In the second work, a numerical algorithm, named as reducible design variable method (RDVM) topology optimization, is proposed in order to efficiently reduce the computational expense. Since it usually requires thousands to millions of design variables and up to hundreds of iterations in topology optimization, the major difficulty is its computational expense. The RDVM topology optimization is implemented into static (minimization of compliance) and dynamic (maximization of the fundamental resonance frequency) problems. The RDVM significantly reduces computing time, as confirmed by numerical examples. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2011-07-08 10:10:20.606
6

Reduction of vibration transmission and flexural wave propagation in composite sandwich panels

Motipalli, V. V. Satish K. January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Liang-Wu Cai / X. J. Xin / Thin walled structures such as plates and shells have application in many fields of engineering because these structures are light weight and can support large loads when designed suitably. In real world, loads may cause these structures to vibrate which can be undesirable causing fatigue and failure of the structure. Such undesirable vibrations need to be reduced or eliminated. In this work, analytical studies of flexural wave propagation for idealized geometries are conducted and finite element method (FEM) is used to explore the effects of composite panel designs of finite size for the reduction of vibration transmission. In the analytical studies, the influence of the material properties on the reflection and transmission characteristics are explored for an infinite bi-material plate, and infinite plate with a strip inhomogeneity. In the analytical study of an infinite thin plate with a solid circular inclusion, the far and near field scattering characteristics are explored for different frequencies and material properties. All the analytical studies presented here and reported in the literature consider infinite plates to characterize the flexural wave propagation. Obtaining closed form solutions to characterize the flexural wave propagation in a finite plate with inclusions is mathematically difficult process. So, FEM is used to explore the composite panel designs. The understanding gained about the material properties influence on the flexural wave propagation from analytical studies helped with the choice of materials for FEM simulations. The concept of phononic crystals is applied to define the design variations that are effective in suppressing vibration transmission. Various design configurations are explored to study the effects of various parameters like scatterer’s material properties, geometry and spatial pattern. Based on the knowledge gained through a systematic parametric study, a final design of the composite sandwich panel is proposed with an optimum set of parameters to achieve the best vibration reduction. This is the first study focused on reducing vibration and wave transmission in composite rotorcraft fuselage panels incorporating the concept of phononic crystals. The optimum sandwich panel design achieved 98% vibration transmission reduction at the frequency of interest of 3000 Hz.
7

Design of a Rear-Wheel After-Market Suspension System for Manual Wheelchairs

Bierworth, Rick Daniel 22 March 2007 (has links)
The objective of this study was to design and build an after-market suspension for the rear wheels of a manual wheelchair. Suspension for wheelchairs is important because it has been reported that the International Organization for Standards' requirements for vibration loads on wheelchair users (ISO 2631-1), are not meet by today's standard wheelchairs. Today's wheelchairs need to be able to absorb everyday shock loads, thereby minimizing the energy transmitted to the user. The chosen design is based around the concept of adding shock reduction material between the hub of the wheel, and the axel bolt that connects the wheel to the frame of the chair. The approach taken was to design a suspension system that resides between an oversized wheel bearing, and the axle. To do this, ball-race bearings with an inner diameter of 4" were chosen, and polyurethane rubber was used as the shock absorbing material. Pro-Mechanica, a finite element analysis program, was used to analyze the suspension system. Since the most common camber/tilt for wheelchair wheels is three degrees from the vertical, the anticipated loads were applied to the wheel at this angle. A prototype of the suspension system was constructed to verify that the design would work, but no tests were performed on it. This analysis showed that the suspension system should not fail when subjected to 10 times the static load. This load was considered large enough to encompass the forces that a wheelchair chair wheel is typically subjected to. There is room for further work in the area of weight reduction, and in the use of the suspension system on steeper wheel cambers.
8

Scanning micro interferometer with tunable diffraction grating for low noise parallel operation

Karhade, Omkar 20 May 2009 (has links)
Large area high throughput metrology plays an important role in several technologies like MEMS. In current metrology systems the parallel operation of multiple metrology probes in a tool has been hindered by their bulky sizes. This study approaches this problem by developing a metrology technique based on miniaturized scanning grating interferometers (μSGIs). Miniaturization of the interferometer is realized by novel micromachined tunable gratings fabricated using SOI substrates. These stress free flat gratings show sufficient motion (~500nm), bandwidth (~50 kHz) and low damping ratio (~0.05). Optical setups have been developed for testing the performance of μSGIs and preliminary results show 6.6 μm lateral resolution and sub-angstrom vertical resolution. To achieve high resolution and to reduce the effect of ambient vibrations, the study has developed a novel control algorithm, implemented on FPGA. It has shown significant reduction of vibration noise in 6.5 kHz bandwidth achieving 6x10-5 nmrms/√Hz noise resolution. Modifications of this control scheme enable long range displacement measurements, parallel operation and scanning samples for their dynamic profile. To analyze and simulate similar optical metrology system with active micro-components, separate tools are developed for mechanical, control and optical sub-systems. The results of these programs enable better design optimization for different applications.
9

Réduction des vibrations de structures composites complexes par dispositifs piézoélectriques shuntés : application aux aubes de turbomachines / Vibration reduction of complex composite structures with shunted piezoelectric devices : application to turbojet blades

Thierry, Olivier 01 December 2016 (has links)
Cette thèse CIFRE (Conventions Industrielles de Formation par la REcherche), en collaboration avec Safran Aircraft Engines, concerne la réduction des vibrations de flexion en basse fréquence d'une aube de rotor de soufflante en matériau composite. L'intérêt premier est de réduire les marges au flottement en augmentant l'amortissement des aubages pour permettre l'utilisation des moteurs dans des plages de fonctionnement à haut rendement actuellement inexploitées. Les autres avantages directement liés à la réduction de vibration sont l'augmentation de la durée de vie des pièces ainsi que la réduction du bruit du moteur. L'objet de cette étude, est d'étudier différents dispositifs d'amortissement de vibrations piézoélectriques, en basses fréquences, applicables à une aube de turbomachine fabriquée en matériaux composites. Les applications principalement visées sont des aubes de rotor de soufflante ou des pales de rotor non caréné ("open-rotor"), de géométrie élancée et complexe. Les solutions étudiées utilisent des éléments piézoélectriques couplés à un circuit électrique passif ou semi-passif. Le coeur de ce travail de thèse, encore un verrou scientifique à l'heure actuelle, est de proposer des solutions performantes qui intègrent les éléments piézoélectriques aux aubes de soufflante afin de respecter les contraintes aérodynamiques imposées pour ce type de structure, tout en augmentant l'amortissement sur un des premiers modes de vibration. Les performances de ce genre de dispositifs sont directement liées à une grandeur : le facteur de couplage électromécanique, qu'il s'agit de maximiser. Il dépend de toutes les caractéristiques de la structure : les matériaux utilisés (structure composite hôte, matériau piézoélectrique), mais surtout du placement et de la géométrie des éléments piézoélectriques. L'utilisation de matériaux piézoélectriques connectés à des circuits actifs, semi-passifs ou passifs a été largement étudiée mais les expériences traitent presque toujours de cas académiques de poutres ou de plaques. L'objectif est ici, pour le dispositif piézoélectrique développé, de pouvoir évaluer les performances des shunts en terme d'atténuation sur une structure massive faiblement amortie. Une partie du travail consiste ainsi à bâtir un modèle éléments finis prédictif de la structure composite couplée aux matériaux piézoélectriques, en vue de quantifier les performances du dispositif. Plusieurs solutions sont testées sur une structure simple pour évaluer l'influence sur les performances du dispositif, (1) du choix du matériau piézoélectrique, (2) du placement et de la géométrie des éléments piézoélectriques ainsi que (3) du circuit électrique dissipatif. Différentes solutions d'intégration à l'aube sont proposées et une méthode de caractérisation des propriétés des matériaux tissés est développée dans la perspective d'intégrer les matériaux actifs à la préforme du composite. Cette étude est à la fois numérique et expérimentale : un démonstrateur, utilisant une aube en matériaux composites est conçu puis testé en laboratoire pour valider les concepts proposés. / This thesis concerns the vibration reduction in the low frequency range of a composite fan blade of a turbojet engine with piezoelectric devices. The interest is to increase lifespan and avoid flutter phenomena by reducing the vibration amplitude. The purpose of this thesis is to study several shunted piezoelectric devices, in the low frequency range, that can be applied to a woven composite turbojet fan blade. The targeted applications are the LEAP fan blades or the “open-rotor” fan blade, both of them required to manage a complex geometry. The solutions investigated used piezoelectric elements coupled to a passive or semi-passive circuit. The core of this thesis, still a scientific obstacle at present, is to propose efficient solutions that integrate the piezoelectric elements to the fan blades in order to meet aerodynamic constraints for this type of structure, while increasing damping level on one of the first modes of vibration. The performances of such devices are directly related to a coefficient: the electromechanical coupling factor that requires to be maximized. This coefficient depends on all the features of the structure: materials used (host composite structure, piezoelectric material), but especially the placement and geometry of the piezoelectric elements. The use of piezoelectric material connected to active, semi-passive or passive circuits has been extensively studied but the experiences almost always deal with academic cases such as beams or plates. The aim is for the developed piezoelectric device, to evaluate the damping performance of a weakly damped massive structure.A part of the work is thus to develop a predictive finite element model of the structure coupled to the piezoelectric material to quantify the performance of the device. Several solutions are tested on a simple structure to evaluate the influence on the device performance of, (1) the choice of the piezoelectric material, (2) the placement and geometry of the piezoelectric elements, and (3) of the dissipative circuit. Various integration solutions in the blade are proposed and a method for characterizing the properties of woven materials is developed in the perspective of integrating the active materials in the composite preform.This study is both numerical and experimental: a demonstrator using a composite fan blade is designed and tested in the laboratory to validate the proposed concepts.
10

Vibration reduction over junctions in buildings / Vibrations förändringar över knutpunkter i byggnader

Forsberg, Alexander, Wali, Aras January 2021 (has links)
Structure borne sound can travel multiple paths from one office to another and choosing to sound insulate a specific building element can be difficult since all the building elements are connected together and form a coupled system. The current approach by engineers when investigating transmission paths between spaces in a building is using a computer model and assuming that the junctions are firmly clamped or free. Standardized measuring methods includes a large amount of measuring points on each side of a junction and excitation over large areas. This study intends to investigate if it is possible to gain valuable information with a small amount of measuring points in a field measurement by comparing the data with an analytical model and a finite element model. The field measurement consisted of excitation from an impulse hammer from two excitation points and three accelerometers placed on each side of the junctions and on both sides of the separating wall. The measurement took place in a office building, with no information about the structure other than length, width and thickness of the elements.The reduction over the junctions varied with frequency and no general conclusion could be made about the transmission paths. The results showed high vibration reduction over the junction in low frequencies which then decreased in higher frequencies. Measurement results in low frequencies coincided with the analytical model, that vibration reduction is high over a junction for lighter separating walls in low frequencies and decrease quickly as frequency increases. Different results over each junction was obtained depending on excitation point, which indicates that there is flanking transmission along with the fact that it is a complex coupled system. / Strukturburet ljud kan färdas flera olika vägar från ett kontor till ett annat och att ljudisolera en specifik vägg kan vara svårt då alla byggnadselement är ihopkopplade och skapar ett kopplat system. Den nuvarande metoden ingenjörer använder för att undersöka transmissionsvägar mellan rum är att skapa modeller i datorprogram där antaganden att byggnadselementen är fast inspända eller fritt upplagda är gjorda. Standardiserade mätmetoder använder sig av en stor mängd mätpunkter på båda sidor om knutpunkterna och excitationer över stora ytor. Den här studien avser att undersöka möjligheten att erhålla värdefull information med ett fåtal mätpunkter i en fältmätning genom att jämföra den samlade mätdatan med en analytisk modell och en FEM modell. Fältmätningen består av excitation med en impulshammare i två excitationspunkter och tre accelerometrar på vardera sida om knutpunkterna och båda sidor om skiljeväggen. Mätningen utfördes i en kontorsbyggnad, utan någon information om strukturen förutom längd, bredd och tjocklek på byggnadselementen.Reduktionen över knutpunkterna varierade i frekvens och inga generella slutsatser kunde göras angående transmissionsvägar. Resultaten visade hög reduktion i vibrationsskillnad över knutpunkterna i låga frekvenser vilket minskade med ökad frekvens. Mätningsresultaten stämde överens med den analytiska modellen i låga frekvenser, med avseende på att reduktionen över knutpunkter med lätt skiljevägg är hög i låga frekvenser och avtar med ökad frekvens. Resultaten över knutpunkterna var beroende på val av excitationspunkt vilket indikerar att mätresultaten innehåller flankerande transmissioner och att det är ett komplext kopplat system.

Page generated in 0.1556 seconds