Spelling suggestions: "subject:"ocean energy"" "subject:"ccean energy""
41 |
DEVELOPING AN ECOLOGICAL SOCIAL JUSTICE FRAMEWORK FOR OCEAN ENERGY TECHNOLOGIES: CASE STUDIES FROM THE PHILIPPINESBatongbacal, Jay 13 August 2010 (has links)
Unless subjected to skeptical and conscious scrutiny, environmentally-friendly ocean energy technologies can become “Trojan machines of social inequity” due to the subtle re-organizing influences of technologies on culture and the society. Environmental laws that promote or regulate ocean energy technologies can act as “Trojan legal regimes” in the absence of a framework for assessing and anticipating their adverse impacts on social justice. “Environmental justice” is inadequate for this task, so an alternative framework is proposed: ecological social justice, drawn from the Third World’s perspective of sustainable development as equitable sharing. Though overshadowed by the prevalent notion of sustainable development as limits to growth, a review of international environmental law shows that the ideas of equitable sharing have persisted, underpinning demands for more equitable distribution of resources and environmental amenities, greater public participation in decision-making, and special attention in favor of specified social groups. Beginning with the critiques of environmental justice and then drawing upon a substantivist view of the role of the Economy as an ecological link between Society and Nature, a sketch of ecological social justice is drawn. The assessment of whether specific legal regimes or their implementation promote or hinder social justice revolve around three focal points: distribution, recognition, and participation, and pay special attention to the role of culture and power in society. The assessment also incorporates and emphasizes the ‘local’ conception of social justice in order to remain true to its ‘ecological’ character.
To demonstrate, the paper conducts detailed case studies of the Philippines. The 1987 Constitution established a right to environment as a result of the historical evolution of a constitutional policy of promoting social justice, This caused Philippine environmental and ocean resource laws to incorporate provisions that promote ecological social justice. Analysis of Philippine ocean environment and energy laws and two internationally-recognized ocean energy projects reveals insights into how even the most environmentally-friendly but complex technologies can lead to domination and oppression, and how guiding ideals of equitable sharing at the local levels can lead to more socially-just solutions.
|
42 |
Qualitative risk analysis on wave energy technologiesBliss, Nice Sam January 2020 (has links)
Wave energy as an industry is yet to emerge as a reliable energy technology. As of now, no wave energy device is said to be a commercial success. Survival in the harsh ocean environment, the low frequency of waves and the variability of wave resources are the basic challenges that a wave power concept or a developer has to overcome. In addition to these challenges, there are number of other barriers such as economic and regulatory risks which hinder the development. A number of concepts or devices have failed one after another, to be commercially successful. Many of the failures were due to economic reasons and others were due to technical or environmental factors. Mistakes or failures can be repeated if they are not shared within the industry. This thesis attempts to identify the barriers to wave energy concepts and to analyse them qualitatively. Efforts have been taken to include the previous instances of failures and their causes so as to avoid them in future. The data was collected through literature review of published papers, reports, news articles and through a survey which was distributed among experts in the industry and academia. It can be seen that one barrier can trigger others and that they are interconnected. In the same way, solving one barrier can clear the others too. The risks faced by wave energy technologies are identified, analysed and some mitigation methods are discussed.
|
43 |
Analysis and development of a three body heaving wave energy converterBeatty, Scott, J. 01 May 2009 (has links)
A relative motion based heaving point absorber wave energy converter is being co-developed by researchers at the University of Victoria and SyncWave Systems Inc. To that end---this thesis represents a multi-faceted contribution to the development effort. A small scale two-body prototype wave energy converter was developed and tested in a wave tank. Although experimental problems were encountered, the results compare reasonably well to the output of a two degree of freedom linear dynamics model in the frequency domain.
A two-body wave energy converter design is parameterized as a basis for an optimization and sensitivity study undertaken to illustrate the potential benefits of frequency response tuning. Further, a mechanical system concept for frequency response tuning is presented. The two degree of freedom model is expanded to three degrees of freedom to account for the tuning system. An optimization procedure, utilizing a Sequential Quadratic Programming algorithm, is developed to establish control schedules to maximize power capture as a function of the control variables. A spectral approach is developed to estimate WEC power capture in irregular waves.
Finally, as a case study, the modeling, optimization, and spectral methods are applied to predict performance for a large scale wave energy converter deployed offshore of a remote Alaskan island. Using archived sea-state data and community electrical load profiles, a wave/diesel hybrid integration with the remote Alaskan community power system is assessed to be technologically feasible.
|
44 |
Assessment of the potential for conflict between existing ocean space use and renewable energy development off the coast of OregonSullivan, Colleen M. (Colleen Marie) 05 June 2012 (has links)
Oregon's ocean waters are a potential source of wind, wave, and tidal energy; of interest to renewable energy entrepreneurs and to the U.S. government as it seeks to bolster energy security. In order to install technology to capture this energy, however, it may be necessary to mitigate conflict with existing ocean space users. The objective of this research was to construct a conflict analysis model in a GIS to answer the following research questions: (1) Within the study area off the coast of Oregon, where are stakeholders currently using ocean space and how many uses overlap? (2) To what extent might existing ocean space use present potential for conflict with renewable energy development? (3) How do various types of uncertainty affect analysis results? (4) What are the implications of these findings for ecosystem based management of the ocean?
All available spatial information on ocean space usage by commercial fishing, commercial non-fishing, recreational, Native American, and scientific communities was gathered. Stakeholder outreach with these communities was used to vet the collected data and allow each to contribute knowledge not previously available through GIS data clearinghouses maintained by government or interest groups. The resulting data were used as inputs to a conflict visualization model written in Python and imported to an ArcGIS tool. Results showed extensive coverage and overlap of existing ocean space uses; specifically that 99.7% of the 1-nm² grid cells of the study area are occupied by at least 6 different categories of ocean space use. The six uses with the greatest coverage were: Fishing – Trolling, Habitat, Military, Fishing - Closure Areas, Protected, and Marine Transportation - Low Intensity. An uncertainty analysis was also completed to illustrate the margin for error and therefore the necessity of appropriate stakeholder outreach during the renewable energy siting process, as opposed to relying only on a GIS.
Ranking of each category by its potential for conflict with renewable energy development demonstrated which areas of the ocean may be particularly contentious. Because rankings are subjective, a tool was created to allow users to input their own rankings. For the purpose of this report, default rankings were assigned to each as justified by the literature. Results under these assumptions showed that space use and potential for conflict were highest between the coast and approximately 30 nm at sea. This is likely because certain space use is limited by depth (e.g., recreational use); there is increased shipping density as vessels approach and depart major ports; and increased fuel costs associated with traveling further from shore.
Two potential applications of model results were demonstrated. First, comparison with existing wave energy permit sites highlighted relative potential for conflict among the sites and the input data detailed the specific uses present. Second, comparison with areas determined most suitable for development by the wave energy industry illustrated that areas of high suitability often also had high rankings for potential for conflict. It appeared that the factors that determined development suitability were often the same factors that drew current ocean space users to those locations.
Current support at the state, regional and federal level under the National Ocean Policy for the use of marine spatial planning as a tool to implement ecosystem based management of the oceans requires that tools such as the one developed in this research are used, to ensure that all components of the marine ecosystem are considered prior to implementation of a management plan. The addition of renewable energy to the current social landscape of the ocean will reduce the resource base for many categories of ocean space use. Model results demonstrated that mitigation of conflict between development and existing space use is not merely a best practice supported by current policy, but a necessity. Results presented a visualization of the social landscape of the ocean that could help managers determine which stakeholders to engage during the initial stage of choosing a site for development. / Graduation date: 2012
|
45 |
Design and Construction of High Current Winding for a Transverse Flux Linear Generator Intended for Wave Power GenerationAmine Ramdani, Ahmed, Rudnik, Sebastian January 2018 (has links)
There is currently a high demand for electric power from renewablesources. One source that remains relatively untapped is the motionof ocean waves. Anders Hagnestål has been developing a uniquelyefficient and simplified design for a point-absorb buoy generator byconverting its linear motion directly into alternating electric power usinga linear PM engine. To test this method, a smaller prototype isbuilt. Its characteristics present some unusual challenges in the designand construction of its winding.Devices of this type typically use relatively low voltage (690V typicallyfor a wind turbine, compared to the 10kV range of traditionalpower plants). To achieve high power, they need high current, whichin turn requires splitting the conductors in the winding into isolatedparallel strands to avoid losses due to eddy currents and current crowding.However, new losses from circulating currents can then arise. Inorder to reduce said losses, the parallel conductors should be transposedin such a way that the aggregate electromotive force the circuitsthat each pair of them forms is minimized.This research and prototyping was performed in absence of advancedindustrial means of construction, with limited space, budget,materials, manpower, know-how, and technology. Manual ingenuityand empirical experimentation were required to find a practical implementationfor: laying the cables, fixing them in place, transferringthem to the machine, stripping their coating at the ends and establishinga reliable connection to the current source.Using theoretical derivations and FEM simulation, a sufficientlygood transposition scheme is proposed for the specific machine thatthe winding is built for. A bobbin replicating the shape of the enginecore is built to lay down the strands.The parallel strands are then organized each into their respectivebobbin, with a bobbin rack and conductor funneling device being designedand constructed to gather them together into a strictly-organizedbundle. An adhesive is found to set the cables in place.Problems with maintaining the orientation and configuration of thecables in the face of repeated torsion are met and solved. A chemicalsolution is used to strip the ends of the conductors, and a reliableconnection is established by crimping the conductors into a bi-metalCu-Al lug.ivIn conclusion, the ideal transposition schemes required to cancelout circulating currents due to magnetic flux leakage are impossibleto put in practice without appropriate technological means. The feasibletransposition scheme turns out to be a simple mirroring of conductors’positions, implemented by building each half of the windingseparately around replicas of the core and then connecting them usingcrimping lugs. / Efterfrågan på el från förnybara källor är hög och inget tyder på att det kommer ändras den närmsta tiden. En källa till förnybar el som än idag står relativt orörd är den där man använder energin från havsvå- gor. Det är denna förnybara källa Anders Hagnestål haft i åtanke när han nu bygger en unikt effektiv generator med syftet att i ett senare skede utvinna el med hjälp av flytande punktabsorberande vågkraft- system. Generatorn är av den linjära typen och omvandlar det punk- tabsorberande systemet rörelse till el. För att testa denna generator- modell så påbörjades bygget av två fullskaliga prototyper 2017. Denna uppsats behandlar specifikt arbetet med generatorlindningen till pro- totyperna och innefattar processen från design till själva byggnatio- nen. Lindingen består av flertalet mindre och isolerade lindningsleda- re med uppgift att bland annat minska skinneffekt och virvelströms- förluster. När man använder denna metod så uppkommer dock ett nytt problem vilket härstammar från att lindningsledarna är samman- kopplade i vardera ända och bildar på så sätt n slutna strömkretsar. Konsekvensen kan vara stora förluster från cirkulerande strömmar på grund av det magnetiska ströflöde som finns runt järnkärnan som lindningen omsluter. Utgångspunkten för att minimera dessa cirkule- rande strömmar är att transponera alla lindningsledare på ett sätt så att den resulterande elektromotoriska spänningen för varje strömkrets blir så liten som möjligt. Med hjälp av förenklade modeller samt FEM simuleringar så bestämdes ett lämpligt sätt att transponera lindningstrådarna utifrån oli- ka kriterier. Lösningen blev att lindningstrådarna endast transponera- des en gång med en så kallad 180 grader transponering. Detta ger en tillräckligt god minimering av de cirkulerande ström- marna, men den stora fördelen med denna lösning är att det är möjligt att linda maskinen med de små resurser projektet hade tillgång till, dock var detta till en stor nackdel då väldigt mycket tid gick till att hitta egna tillvägagångsätt för att utföra byggandet av lindningen på ibland okonventionella sätt.
|
Page generated in 0.06 seconds