1 |
Isotope harvesting at heavy ion fragmentation facilitiesMastren, T., Pen, A., Peaslee, G. F., Wosniak, N., Loveless, S., Essenmacher, S., Sobotka, L., Morrissey, D., Lapi, S. E. 19 May 2015 (has links) (PDF)
Introduction
The National Superconducting Cyclotron Laboratory (NSCL) is a national nuclear physics facility in which heavy ion beams are fragmented to produce exotic nuclei. In this process of fragmentation many nuclei are created, however, only one isotope is selected for experimentation. The remaining isotopes that are created go unused. The future upgrade of the NSCL to the Facility for Rare Isotope Beams (FRIB) will increase the incident energy of these heavy ion beams and amplify the current by three orders of magnitude. An aqueous beam dump will be created to collect the unused isotopes created in the process of fragmentation. Several of these isotopes are of interest for many applications including nuclear security, medical imaging, and therapy and are not currently available or are only available in very limited supply. Harvesting these isotopes from the aqueous beam dump could provide a consistent supply of these im-portant isotopes as an ancillary service to the existing experimental program.
Material and Methods
A liquid water target system was designed and tested to serve as a mock beam dump for exper-iments at the NSCL1. A 25 pnA 130 MeV/u 76Ge beam was fragmented using a 493 mg/cm2 thick beryllium production target. After fragmentation the beam was separated using the A1900 frag-ment separator2 set up for maximum 67Cu pro-duction using a 240 mg/cm2 aluminum wedge and a 2% momentum acceptance. The secondary beam was collected for four hours in the liquid water target system before being transferred to a collection vessel. Four additional four hour collections were made before finally shipping the five collections to Washington University and Hope College for chemical separation.
Four of the five samples were separated using a two part separation scheme. First they were passed through and 3M Empore iminodiacetic acid functionalized chelation disk in a 1.25M ammonium acetate solution at pH 5. The flow through was collected and analyzed using an HPGe detector. Then 10mL of 6M HCl acid was passed through the chelation disk to remove the 2+ transition metals. The 10mL of 6M HCl acid was collected after passing through the disk and added to an anion-exchange column with 2.5 g AG1-X8 resin. The eluate was collected and then an additional 10mL of 6M HCl was passed through the column to remove the nickel. The 67Cu was then collected by passing 10mL of 0.5M HCl and the eluate was collected in 1mL fractions each analyzed by HPGe for 67Cu concentration and purity. The two highest 67Cu fractions were heated to dryness and reconstituted in 50 μL 0.1M ammonium acetate pH 5.5.
2 μL of 7.9 mg/mL NOTA-Bz-Trastuzumab was added to 45 μL of 67Cu and 3 μL 0.1M ammonium acetate pH 5.5. This solution was placed in a shaking incubator at 37 °C for twenty minutes and then analyzed by radio-instant thin layer chromatography in order to determine the per-cent of 67Cu bound to the antibody.
Results and Conclusion
67Cu was collected into the liquid water target system with an average efficiency of 85 ± 5 %. The secondary beam was 73 % pure with the impurities, half-lives greater than 1 minute, listed in TABLE 1.
Separation of 67Cu from the impurities resulted in an average recovery of 88 ± 3 % for a total recovery of 67Cu from the beam and separation of 75 ± 4 %. No detectable radioactive impurities were found in the final samples when analyzed using an HPGe detector. TABLE 2 shows the amount of 67Cu collected from the beam and the amount recovered decay corrected to end of bombardment. Labeling NOTA-Bz-Trastuzumab with 67Cu resulted in > 95 % radiochemical yield.
Collection of the 73 % pure 67Cu beam in water and the resulting separation proved successful. These results demonstrate that radioisotopes can be collected from fragmented heavy ion beams and isolated in usable quantities and purity for many radiochemical applications. Further experimentation with an unpurified beam to better simulate conditions in the beam dump at the Facility for Rare Isotope Beams will be performed in the near future.
|
2 |
Isotope harvesting at heavy ion fragmentation facilitiesMastren, T., Pen, A., Peaslee, G. F., Wosniak, N., Loveless, S., Essenmacher, S., Sobotka, L., Morrissey, D., Lapi, S. E. January 2015 (has links)
Introduction
The National Superconducting Cyclotron Laboratory (NSCL) is a national nuclear physics facility in which heavy ion beams are fragmented to produce exotic nuclei. In this process of fragmentation many nuclei are created, however, only one isotope is selected for experimentation. The remaining isotopes that are created go unused. The future upgrade of the NSCL to the Facility for Rare Isotope Beams (FRIB) will increase the incident energy of these heavy ion beams and amplify the current by three orders of magnitude. An aqueous beam dump will be created to collect the unused isotopes created in the process of fragmentation. Several of these isotopes are of interest for many applications including nuclear security, medical imaging, and therapy and are not currently available or are only available in very limited supply. Harvesting these isotopes from the aqueous beam dump could provide a consistent supply of these im-portant isotopes as an ancillary service to the existing experimental program.
Material and Methods
A liquid water target system was designed and tested to serve as a mock beam dump for exper-iments at the NSCL1. A 25 pnA 130 MeV/u 76Ge beam was fragmented using a 493 mg/cm2 thick beryllium production target. After fragmentation the beam was separated using the A1900 frag-ment separator2 set up for maximum 67Cu pro-duction using a 240 mg/cm2 aluminum wedge and a 2% momentum acceptance. The secondary beam was collected for four hours in the liquid water target system before being transferred to a collection vessel. Four additional four hour collections were made before finally shipping the five collections to Washington University and Hope College for chemical separation.
Four of the five samples were separated using a two part separation scheme. First they were passed through and 3M Empore iminodiacetic acid functionalized chelation disk in a 1.25M ammonium acetate solution at pH 5. The flow through was collected and analyzed using an HPGe detector. Then 10mL of 6M HCl acid was passed through the chelation disk to remove the 2+ transition metals. The 10mL of 6M HCl acid was collected after passing through the disk and added to an anion-exchange column with 2.5 g AG1-X8 resin. The eluate was collected and then an additional 10mL of 6M HCl was passed through the column to remove the nickel. The 67Cu was then collected by passing 10mL of 0.5M HCl and the eluate was collected in 1mL fractions each analyzed by HPGe for 67Cu concentration and purity. The two highest 67Cu fractions were heated to dryness and reconstituted in 50 μL 0.1M ammonium acetate pH 5.5.
2 μL of 7.9 mg/mL NOTA-Bz-Trastuzumab was added to 45 μL of 67Cu and 3 μL 0.1M ammonium acetate pH 5.5. This solution was placed in a shaking incubator at 37 °C for twenty minutes and then analyzed by radio-instant thin layer chromatography in order to determine the per-cent of 67Cu bound to the antibody.
Results and Conclusion
67Cu was collected into the liquid water target system with an average efficiency of 85 ± 5 %. The secondary beam was 73 % pure with the impurities, half-lives greater than 1 minute, listed in TABLE 1.
Separation of 67Cu from the impurities resulted in an average recovery of 88 ± 3 % for a total recovery of 67Cu from the beam and separation of 75 ± 4 %. No detectable radioactive impurities were found in the final samples when analyzed using an HPGe detector. TABLE 2 shows the amount of 67Cu collected from the beam and the amount recovered decay corrected to end of bombardment. Labeling NOTA-Bz-Trastuzumab with 67Cu resulted in > 95 % radiochemical yield.
Collection of the 73 % pure 67Cu beam in water and the resulting separation proved successful. These results demonstrate that radioisotopes can be collected from fragmented heavy ion beams and isolated in usable quantities and purity for many radiochemical applications. Further experimentation with an unpurified beam to better simulate conditions in the beam dump at the Facility for Rare Isotope Beams will be performed in the near future.
|
Page generated in 0.1484 seconds