• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelling portfolios with heavy-tailed risk factors / Modelování portfolií s risk faktory s těžkými chvosty

Kyselá, Eva January 2015 (has links)
The thesis aims to investigate some of the approaches to modelling portfolio returns with heavy-tailed risk factors. It first elaborates on the univariate time series models, and compares the benchmark model (GARCH with Student t innovations or its GJR extension) predictive performance with its two competitors, the EVT-GARCH model and the Markov-Switching Multifractal (MSM) model. The motivation of EVT extension of GARCH specification is to use a more proper distribution of the innovations, based on the empirical distribution function. The MSM is one of the best performing models in the multifractal literature, a markov-switching model which is unique by its parsimonious specification and variability. The performance of these models is assessed with Mincer-Zarnowitz regressions as well as by comparison of quality of VaR and expected shortfall predictions, and the empirical analysis shows that for the risk management purposes the EVT-GARCH dominates the benchmark as well as the MSM. The second part addresses the dependence structure modelling, using the Gauss and t-copula to model the portfolio returns and compares the result with the classic variance-covariance approach, concluding that copulas offer a more realistic estimates of future extreme quantiles.
12

Regularly Varying Time Series with Long Memory: Probabilistic Properties and Estimation

Bilayi-Biakana, Clémonell Lord Baronat 17 January 2020 (has links)
We consider tail empirical processes for long memory stochastic volatility models with heavy tails and leverage. We show a dichotomous behaviour for the tail empirical process with fixed levels, according to the interplay between the long memory parameter and the tail index; leverage does not play a role. On the other hand, the tail empirical process with random levels is not affected by either long memory or leverage. The tail empirical process with random levels is used to construct a family of estimators of the tail index, including the famous Hill estimator and harmonic moment estimators. The limiting behaviour of these estimators is not affected by either long memory or leverage. Furthermore, we consider estimators of risk measures such as Value-at-Risk and Expected Shortfall. In these cases, the limiting behaviour is affected by long memory, but it is not affected by leverage. The theoretical results are illustrated by simulation studies.
13

Finding a Representative Distribution for the Tail Index Alpha, α, for Stock Return Data from the New York Stock Exchange

Burns, Jett 01 May 2022 (has links)
Statistical inference is a tool for creating models that can accurately display real-world events. Special importance is given to the financial methods that model risk and large price movements. A parameter that describes tail heaviness, and risk overall, is α. This research finds a representative distribution that models α. The absolute value of standardized stock returns from the Center for Research on Security Prices are used in this research. The inference is performed using R. Approximations for α are found using the ptsuite package. The GAMLSS package employs maximum likelihood estimation to estimate distribution parameters using the CRSP data. The distributions are selected by using AIC and worm plots. The Skew t family is found to be representative for the parameter α based on subsets of the CRSP data. The Skew t type 2 distribution is robust for multiple subsets of values calculated from the CRSP stock return data.
14

Modeling, analysis, and optimization for wireless networks in the presence of heavy tails

Wang, Pu 13 January 2014 (has links)
The heavy-tailed traffic from wireless users, caused by the emerging Internet and multimedia applications, induces extremely dynamic and variable network environment, which can fundamentally change the way in which wireless networks are conceived, designed, and operated. This thesis is concerned with modeling, analysis, and optimization of wireless networks in the presence of heavy tails. First, a novel traffic model is proposed, which captures the inherent relationship between the traffic dynamics and the joint effects of the mobility variability of network users and the spatial correlation in their observed physical phenomenon. Next, the asymptotic delay distribution of wireless users is analyzed under different traffic patterns and spectrum conditions, which reveals the critical conditions under which wireless users can experience heavy-tailed delay with significantly degraded QoS performance. Based on the delay analysis, the fundamental impact of heavy-tailed environment on network stability is studied. Specifically, a new network stability criterion, namely moment stability, is introduced to better characterize the QoS performance in the heavy-tailed environment. Accordingly, a throughput-optimal scheduling algorithm is proposed to maximize network throughput while guaranteeing moment stability. Furthermore, the impact of heavy-tailed spectrum on network connectivity is investigated. Towards this, the necessary conditions on the existence of delay-bounded connectivity are derived. To enhance network connectivity, the mobility-assisted data forwarding scheme is exploited, whose important design parameters, such as critical mobility radius, are derived. Moreover, the latency in wireless mobile networks is analyzed, which exhibits asymptotic linearity in the initial distance between mobile users.
15

Detekce kauzality v časových řadách pomocí extrémních hodnot / Detection of causality in time series using extreme values

Bodík, Juraj January 2021 (has links)
Juraj Bodík Abstract This thesis is dealing with the following problem: Let us have two stationary time series with heavy- tailed marginal distributions. We want to detect whether they have a causal relation, i.e. if a change in one of them causes a change in the other. The question of distinguishing between causality and correlation is essential in many different science fields. Usual methods for causality detection are not well suited if the causal mechanisms only manifest themselves in extremes. In this thesis, we propose a new method that can help us in such a nontraditional case distinguish between correlation and causality. We define the so-called causal tail coefficient for time series, which, under some assumptions, correctly detects the asymmetrical causal relations between different time series. We will rigorously prove this claim, and we also propose a method on how to statistically estimate the causal tail coefficient from a finite number of data. The advantage is that this method works even if nonlinear relations and common ancestors are present. Moreover, we will mention how our method can help detect a time delay between the two time series. We will show how our method performs on some simulations. Finally, we will show on a real dataset how this method works, discussing a cause of...
16

Phénomènes de localisation et d’universalité pour des polymères aléatoires / Localization and universality phenomena for random polymers

Torri, Niccolò 18 September 2015 (has links)
Le modèle d'accrochage de polymère décrit le comportement d'une chaîne de Markov en interaction avec un état donné. Cette interaction peut attirer ou repousser la chaîne de Markov et elle est modulée par deux paramètres, h et β. Quand β = 0 on parle de modèle homogène, qui est complètement solvable. Le modèle désordonné, i.e. quand β > 0, est mathématiquement le plus intéressant. Dans ce cas, l'interaction dépend d'une source d'aléa extérieur indépendant de la chaîne de Markov, appelée désordre. L'interaction est réalisée en modifiant la loi originelle de la chaîne de Markov par une mesure de Gibbs et la probabilité obtenue définit le modèle d'accrochage de polymère. Le but principal est d'étudier et de comprendre la structure des trajectoires typiques de la chaîne de Markov sous cette nouvelle probabilité. Le premier sujet de recherche concerne le modèle d'accrochage de polymère où le désordre est à queues lourdes et où le temps de retour de la chaîne de Markov suit une distribution sous-exponentielle. Dans notre deuxième résultat nous étudions le modèle d'accrochage de polymère avec un désordre à queues légères et le temps de retour de la chaîne de Markov avec une distribution à queues polynomiales d'exposant α > 0. On peut démontrer qu'il existe un point critique, h(β). Notre but est comprendre le comportement du point critique quand β -> 0. La réponse dépend de la valeur de α. Dans la littérature on a des résultats précis pour α < ½ et α > 1. Nous montrons que α ∈ (1/2, 1) le comportement du modèle dans la limite du désordre faible est universel et le point critique, opportunément changé d'échelle, converge vers la même quantité donnée par un modèle continu / The pinning model describes the behavior of a Markov chain in interaction with a distinguished state. This interaction can attract or repel the Markov chain path with a force tuned by two parameters, h and β. If β = 0 we obtain the homogeneous pinning model, which is completely solvable. The disordered pinning model, i.e. when β > 0, is most challenging and mathematically interesting. In this case the interaction depends on an external source of randomness, independent of the Markov chain, called disorder. The interaction is realized by perturbing the original Markov chain law via a Gibbs measure, which defines the Pinning Model. Our main aim is to understand the structure of a typical Markov chain path under this new probability measure. The first research topic of this thesis is the pinning model in which the disorder is heavy-tailed and the return times of the Markov chain have a sub-exponential distribution. In our second result we consider a pinning model with a light-tailed disorder and the return times of the Markov chain with a polynomial tail distribution, with exponent α > 0. It is possible to show that there exists a critical point, h(β). Our goal is to understand the behavior of the critical point when β -> 0. The answer depends on the value of α and in the literature there are precise results only for the case α < ½ et α > 1. We show that for α ∈ (1/2, 1) the behavior of the pinning model in the weak disorder limit is universal and the critical point, suitably rescaled, converges to the related quantity of a continuum model
17

A Non-Gaussian Limit Process with Long-Range Dependence

Gaigalas, Raimundas January 2004 (has links)
<p>This thesis, consisting of three papers and a summary, studies topics in the theory of stochastic processes related to long-range dependence. Much recent interest in such probabilistic models has its origin in measurements of Internet traffic data, where typical characteristics of long memory have been observed. As a macroscopic feature, long-range dependence can be mathematically studied using certain scaling limit theorems. </p><p>Using such limit results, two different scaling regimes for Internet traffic models have been identified earlier. In one of these regimes traffic at large scales can be approximated by long-range dependent Gaussian or stable processes, while in the other regime the rescaled traffic fluctuates according to stable ``memoryless'' processes with independent increments. In Paper I a similar limit result is proved for a third scaling scheme, emerging as an intermediate case of the other two. The limit process here turns out to be a non-Gaussian and non-stable process with long-range dependence.</p><p>In Paper II we derive a representation for the latter limit process as a stochastic integral of a deterministic function with respect to a certain compensated Poisson random measure. This representation enables us to study some further properties of the process. In particular, we prove that the process at small scales behaves like a Gaussian process with long-range dependence, while at large scales it is close to a stable process with independent increments. Hence, the process can be regarded as a link between these two processes of completely different nature.</p><p>In Paper III we construct a class of processes locally behaving as Gaussian and globally as stable processes and including the limit process obtained in Paper I. These processes can be chosen to be long-range dependent and are potentially suitable as models in applications with distinct local and global behaviour. They are defined using stochastic integrals with respect to the same compensated Poisson random measure as used in Paper II.</p>
18

A Non-Gaussian Limit Process with Long-Range Dependence

Gaigalas, Raimundas January 2004 (has links)
This thesis, consisting of three papers and a summary, studies topics in the theory of stochastic processes related to long-range dependence. Much recent interest in such probabilistic models has its origin in measurements of Internet traffic data, where typical characteristics of long memory have been observed. As a macroscopic feature, long-range dependence can be mathematically studied using certain scaling limit theorems. Using such limit results, two different scaling regimes for Internet traffic models have been identified earlier. In one of these regimes traffic at large scales can be approximated by long-range dependent Gaussian or stable processes, while in the other regime the rescaled traffic fluctuates according to stable ``memoryless'' processes with independent increments. In Paper I a similar limit result is proved for a third scaling scheme, emerging as an intermediate case of the other two. The limit process here turns out to be a non-Gaussian and non-stable process with long-range dependence. In Paper II we derive a representation for the latter limit process as a stochastic integral of a deterministic function with respect to a certain compensated Poisson random measure. This representation enables us to study some further properties of the process. In particular, we prove that the process at small scales behaves like a Gaussian process with long-range dependence, while at large scales it is close to a stable process with independent increments. Hence, the process can be regarded as a link between these two processes of completely different nature. In Paper III we construct a class of processes locally behaving as Gaussian and globally as stable processes and including the limit process obtained in Paper I. These processes can be chosen to be long-range dependent and are potentially suitable as models in applications with distinct local and global behaviour. They are defined using stochastic integrals with respect to the same compensated Poisson random measure as used in Paper II.
19

Stochastic Modelling of Financial Processes with Memory and Semi-Heavy Tails

Pesee, Chatchai January 2005 (has links)
This PhD thesis aims to study financial processes which have semi-heavy-tailed marginal distributions and may exhibit memory. The traditional Black-Scholes model is expanded to incorporate memory via an integral operator, resulting in a class of market models which still preserve the completeness and arbitragefree conditions needed for replication of contingent claims. This approach is used to estimate the implied volatility of the resulting model. The first part of the thesis investigates the semi-heavy-tailed behaviour of financial processes. We treat these processes as continuous-time random walks characterised by a transition probability density governed by a fractional Riesz- Bessel equation. This equation extends the Feller fractional heat equation which generates a-stable processes. These latter processes have heavy tails, while those processes generated by the fractional Riesz-Bessel equation have semi-heavy tails, which are more suitable to model financial data. We propose a quasi-likelihood method to estimate the parameters of the fractional Riesz- Bessel equation based on the empirical characteristic function. The second part considers a dynamic model of complete financial markets in which the prices of European calls and puts are given by the Black-Scholes formula. The model has memory and can distinguish between historical volatility and implied volatility. A new method is then provided to estimate the implied volatility from the model. The third part of the thesis considers the problem of classification of financial markets using high-frequency data. The classification is based on the measure representation of high-frequency data, which is then modelled as a recurrent iterated function system. The new methodology developed is applied to some stock prices, stock indices, foreign exchange rates and other financial time series of some major markets. In particular, the models and techniques are used to analyse the SET index, the SET50 index and the MAI index of the Stock Exchange of Thailand.
20

Multivariate Skew-t Distributions in Econometrics and Environmetrics

Marchenko, Yulia V. 2010 December 1900 (has links)
This dissertation is composed of three articles describing novel approaches for analysis and modeling using multivariate skew-normal and skew-t distributions in econometrics and environmetrics. In the first article we introduce the Heckman selection-t model. Sample selection arises often as a result of the partial observability of the outcome of interest in a study. In the presence of sample selection, the observed data do not represent a random sample from the population, even after controlling for explanatory variables. Heckman introduced a sample-selection model to analyze such data and proposed a full maximum likelihood estimation method under the assumption of normality. The method was criticized in the literature because of its sensitivity to the normality assumption. In practice, data, such as income or expenditure data, often violate the normality assumption because of heavier tails. We first establish a new link between sample-selection models and recently studied families of extended skew-elliptical distributions. This then allows us to introduce a selection-t model, which models the error distribution using a Student’s t distribution. We study its properties and investigate the finite-sample performance of the maximum likelihood estimators for this model. We compare the performance of the selection-t model to the Heckman selection model and apply it to analyze ambulatory expenditures. In the second article we introduce a family of multivariate log-skew-elliptical distributions, extending the list of multivariate distributions with positive support. We investigate their probabilistic properties such as stochastic representations, marginal and conditional distributions, and existence of moments, as well as inferential properties. We demonstrate, for example, that as for the log-t distribution, the positive moments of the log-skew-t distribution do not exist. Our emphasis is on two special cases, the log-skew-normal and log-skew-t distributions, which we use to analyze U.S. precipitation data. Many commonly used statistical methods assume that data are normally distributed. This assumption is often violated in practice which prompted the development of more flexible distributions. In the third article we describe two such multivariate distributions, the skew-normal and the skew-t, and present commands for fitting univariate and multivariate skew-normal and skew-t regressions in the statistical software package Stata.

Page generated in 0.0464 seconds