• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Signaling Mechanisms Regulating Neuronal Growth Cone Dynamics

Tornieri, Karine 21 November 2008 (has links)
During the development of the nervous system, neurons migrate to their final location and extend neurites that navigate long distances in the extracellular environment to reach their synaptic targets. The proper functioning of the nervous system depends on correct connectivity, and mistakes in the wiring of the nervous system lead to brain abnormalities and mental illness. Growth cones are motile structures located at the tip of extending neurites that sense and respond to guidance cues encountered along the path toward their targets. Binding of these cues to receptors located on growth cone filopodia and lamellipodia triggers intracellular signaling pathways that regulate growth cone cytoskeletal dynamics. Although studies on extracellular cues and their effects on neuronal guidance are well documented, less is known about the intracellular signaling mechanisms that regulate growth cone motility. This dissertation focuses on two signaling pathways and describes how they might be involved in determining growth cone morphology during neuronal development. The specific aims of this work address: (1) the role of phosphatidylinositol-3-kinase (PI-3K) and its downstream signaling pathway in regulating growth cone motility, and (2) the effect of nitric oxide (NO) release from a single cell on growth cone morphology of neighboring neurons. This study employs defined neurons from the pond snail, Helisoma trivolvis, to demonstrate that inhibition of PI-3K induces a concomitant increase in filopodial length and a decrease in the rate at which neurites advance. These effects are mediated through the lipid and protein kinase activities of PI-3K, and filopodial elongation is due to an increase in the rate at which filopodia elongate and the time that individual filopodia spend extending. Additionally, this study demonstrates that NO release from a single cell can affect growth cone dynamics on neighboring neurons via soluble guanylyl cyclase (sGC), and that NO has a physiological effect up to a distance of 100 ìm. Overall this study provides new information on cellular mechanisms regulating growth cone motility, and suggests a potential role of PI-3K and NO in neuronal pathfinding in vivo.
2

Neuronal Growth Cone Dynamics are Regulated by a Nitric Oxide-Initiated Second Messenger Pathway.

Welshhans, Kristy 01 October 2007 (has links)
During development, neurons must find their way to and make connections with their appropriate targets. Growth cones are dynamic, motile structures that are integral to the establishment of appropriate connectivity during this wiring process. As growth cones migrate through their environment, they encounter guidance cues that direct their migration to their appropriate synaptic targets. The gaseous messenger nitric oxide (NO), which diffuses across the plasma membrane to act on intracellular targets, is a signaling molecule that affects growth cone motility. However, most studies have examined the effects of NO on growth cone morphology when applied in large concentrations and to entire cells. In addition, the intracellular second messenger cascade activated by NO to bring about these changes in growth cone morphology is not well understood. Therefore, this dissertation addresses the effects that a spatially- and temporally-restricted application of physiological amounts of NO can have on individual growth cone morphology, on the second messenger pathway that is activated by this application of NO, and on the calcium cascades that result and ultimately affect growth cone morphology. Helisoma trivolvis, a pond snail, is an excellent model system for this type of research because it has a well-defined nervous system and cultured neurons form large growth cones. In the present study, local application of NO to Helisoma trivolvis B5 neurons results in an increase in filopodial length, a decrease in filopodial number, and an increase in the intracellular calcium concentration ([Ca2+]i). In B5 neurons, the effects of NO on growth cone behavior and [Ca2+]i are mediated via sGC, protein kinase G, cyclic adenosine diphosphate ribose, and ryanodine receptor-mediated intracellular calcium release. This study demonstrates that neuronal growth cone pathfinding in vitro is affected by a single spatially- and temporally-restricted exposure to NO. Furthermore, NO acts via a second messenger cascade, resulting in a calcium increase that leads to cytoskeletal changes. These results suggest that NO may be a signal that promotes appropriate pathfinding and/or target recognition within the developing nervous system. Taken together, these data indicate that NO may be an important messenger during the development of the nervous system in vivo.

Page generated in 0.0374 seconds