• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 92
  • 24
  • 18
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 305
  • 305
  • 305
  • 222
  • 132
  • 129
  • 127
  • 98
  • 40
  • 40
  • 39
  • 38
  • 34
  • 32
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mutant P53 in pre-leukemic hematopoietic stem cells and the pathogenesis of Myelodysplastic Syndrome

Chen, Sisi 29 June 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Myelodysplastic syndrome (MDS) is a clonal disease arising from mutated hematopoietic stem cells (HSCs). MDS stem cells originate from pre-leukemic HSCs, which have enhanced competitive advantage over wild-type (WT) HSCs but normal differentiation capacity. Recently, acquired somatic gain-of-function (GOF) TP53 mutations were identified in the blood of aged healthy individuals as well as in patients with MDS. However, the role of GOF TP53 mutations in clonal hematopoiesis and the pathogenesis of MDS is largely unknown. Based upon our previous studies and clinical findings, I hypothesized that GOF mutant p53 drives the development of pre-leukemic HSCs with enhanced competitive advantage, leading to clonal expansion and the pathogenesis of MDS. To test my hypothesis, I examined HSC behaviors in young p53+/+ and p53R248W/+ mice. I discovered that p53R248W enhances the repopulating potential of HSCs without affecting terminal differentiation. I also found that GOF mutant p53 protects HSCs from genotoxic stress and promotes their expansion. To investigate the role of mutant p53 in the pathogenesis of hematological malignancies, I monitored disease development in p53+/+ and p53R248W/+ mice and observed that some mutant p53 mice develop MDS during aging. Therefore, I demonstrated that GOF mutant p53 enhances the repopulating potential of HSCs and drives the development of pre-leukemic HSCs, predisposing aged mutant p53 mice to MDS development. Mechanistically, I found that mutant p53 increases the chromatin accessibility to genes important for HSC maintenance, including pluripotent gene Sox2 and chemokine gene Cxcl9. By performing biochemical experiments, I discovered that GOF mutant p53, but not WT p53, interacts with histone methyltransferase EZH2 and enhances histone H3 lysine 27 trimethylation (H3K27me3) at genes, including Mef/Elf4 and Gadd45g, that negatively regulate HSC self-renewal. Collectively, these findings demonstrated that GOF mutant p53 drives pre-leukemic HSC development through modulating epigenetic pathways. Thus, our studies have uncovered novel mechanistic and functional links between GOF mutant p53 and epigenetic regulators in pre-leukemic HSCs. This research may identify epigenetic regulator EZH2 as a novel target for the prevention and treatment of MDS patients with TP53 mutations.
22

The Role of Nutrition Assessment in the Indication of Gastrointestinal Complications in Adults Undergoing Allogeneic Hematopoietic Stem Cell Transplantation: A Case Report

Lesnoski, Bryant P. 18 October 2019 (has links)
No description available.
23

Generation and Exploration of a Novel Low Oxygen Landscape for Hematopoietic Stem and Progenitor Cells

Dausinas, Paige Burke 10 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hematopoietic stem (HSC) and progenitor (HSPC) cells reside in low oxygen (~1- 4%, low O2) bone marrow niches which provide critical signals for maintenance, selfrenewal, and differentiation. Exposure of HSC/HSPCs to air (~21%) for less than 10 minutes irreversibly diminishes numbers of phenotypic and functional stem cells, a phenomenon termed extra physiologic oxygen stress/shock. Yet, most studies harvest and analyze HSC/HSPCs in air and often in fixed cells, leaving endogenous signaling mechanisms unidentified. To better understand the endogenous mechanisms regulating HSCs and HSPCs, we generated the first low O2 landscape of phenotypic/functional/signaling alterations in live, low O2 harvested/sorted HSC/HSPCs utilizing novel technology. HSC (LSKCD150+) and HSC/HSPC (LSK) expression, frequency, and stem cell maintenance retention were enhanced in low O2 relative to historic data and our air data. Transcriptomics uncovered low O2 differential pathway regulation of HSC/HSPCs and HSCs with analysis identifying low O2 enrichment of genes/pathways including Ca2+ ion binding, altered sodium hydrogen (Na+/H+) activity, viral entry, and transmembrane receptor activity in both HSCs and HSPCs. In exploring the low O2 landscape, we investigated differential low O2 regulation of Ca2+ and SARS-CoV-2 related pathways/mechanisms in HSCs and HSPCs. Differential Ca2+ regulation was observed in our transcriptional/proteomic analysis corroborated by phenotypic/functional data demonstrating increases in low O2 of cytosolic and mitochondrial Ca2+ flux, ABC Transporter (ABCG2) and Na+/H+ (NHE1) expression, discovery of a novel low O2 Ca2+ high HSPC population that enhances HSC maintenance compared to Ca2+ low populations and blunting of this population and subsequent enhanced stem cell maintenance upon NHE1 inhibition (Cariporide). Multi-omics analyses also identified enhancements in COVID19-related pathways in low O2 that corresponded with enhanced expression of SARS-CoV-2 receptors/co-receptors, SARS-CoV-2 spike protein (SP) binding, and expansion of SP-bound HSC/HSPCs in low O2 compared to air, as well as enhanced stem cell maintenance of SP-bound, versus unbound, cells in low O2. Together, these data presented show low O2 harvest/retention of HSC/HSPCs enhances stem cell maintenance, which could be utilized to improve HSC expansion, and leads to differential pathway/signaling regulation of various biological pathways in HSC/HSPCs including Ca2+ and SARS-CoV-2/viral infection that results in phenotypic and functional consequences. / 2024-11-01
24

The immunobiology and clinical management of acute graft versus host disease after allogeneic transplant

Chen, Kaina 31 January 2023 (has links)
Alloreactivity between donor cells against disparate host tissue is a natural and normal physiologic phenomenon after engraftment. Consequently, GVHD is a universally expected side effect after allogeneic HSCT. An effective strategy to prevent severe or fatal acute GVHD is require if the transplant is to be successful. The HSCT field has witnessed significant progress in the prevention and treatment of acute GVHD. However, select interventions come at the cost of losing the alloimmune activity that prevents relapse, the GVL effect, as many of the mechanisms which cause GVHD are shared with those responsible for GVL. Current efforts are focused on therapeutic interventions that not only alleviate the burden of acute GVHD but does so in a way that maintains the GVL effect. This review will provide an up-to-date overview of our current understanding of the diagnosis, risk stratification, immunobiology of acute GVHD, summarize efforts to prevent and treat the disease, and provide a perspective on future directions.
25

Loss of the Rho GTPase Activating Protein p190-B enhances hematopoietic stem cell engraftment potential

Xu, Haiming 22 August 2008 (has links)
No description available.
26

Cord blood dendritic cell populations in atopic-at-risk and not-at-risk infants

Strigul, Olena January 2018 (has links)
Allergic disease encompasses multiple complex syndromes including hayfever, food allergies, eczema and asthma. Atopy is the genetic predisposition towards an IgE-driven immune response in reaction to environmental stimuli, and often serves as a predictor for the development of allergies in the future. While disease etiology is not yet fully understood, many factors including genetics and the environment play a role in the development of allergic disease. Reliable methods for predicting atopic disease development are crucial in emerging therapeutic approaches, which aim to decrease allergic disease severity and clinical progression through early detection and preventative measures. While DCs are emerging as key players in the development of allergic disease, they are challenging to study in vivo due to their low numbers, and ex vivo methods remain relatively unstudied. In this project, receptor expression profiles of atopic-at-risk infants compared to not-atrisk infants were examined in DCs found in cord-blood at birth and CD34+-derived DCs cultured ex vivo. Atopic-at-risks exhibited a higher percentage of ex vivo pDCs expressing TSLPR when compared to not-at-risks. Additionally, an increase of FcεRI expression in atopic-at-risks was found approaching significance in in vivo mDCs. Furthermore, DC differentiation in culture from hematopoietic progenitors and the differences between in vivo and ex vivo DCs were studied. Results indicated a consistent 10-fold increase in the DC population after a 12-day culture compared to cord blood DC numbers. Additionally, a distinct DC population emerged as early as Day 3 with a substantial increase in the percentage of mDCs relative to pDCs. A trend of increased TSLP, CD80, CD86 receptor expression and decreased TLR-5, ST2, FcεRI receptor expression after culture in both mDCs and pDCs was also noted. / Thesis / Master of Science (MSc) / Allergic disease development typically begins in infancy, progressing classically in a series of stages from early life through adulthood. Currently, there is a lack of reliable predictive tests for the development of atopic sensitization and disease. This has slowed efforts to intercept and prevent allergy development at its earliest stages. Dendritic cells (DCs) link innate and adaptive immunity and are thought to be key players in the development of allergic disease. However, the low numbers of DCs in blood make them challenging to study. Methods such as inducing the differentiation of DCs from progenitors are often utilized to obtain a sufficient number of cells. This project investigates whether receptor expression of cord blood-derived DCs grown ex vivo are comparable to the profiles of in vivo DCs at birth. Furthermore, the expression of key receptors on DCs grown in vivo/ex vivo are compared in atopic at-risk, not-at-risk infants.
27

Stem cell transplantation: home care, graft-versus-host disease and costs /

Svahn, Britt-Marie, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 5 uppsatser.
28

Efeito da concentração e combinação de crioprotetores na viabilidade medida por citometria de fluxo das células tronco hematopoiéticas congeladas em freezer mecânico

Fischer, Gustavo Brandão January 2014 (has links)
O Transplante de Células Tronco Hematopoiéticas (TCTH) baseia-se no princípio de infusão de Células Tronco Hematopoiéticas (CTH) CD34 + num receptor condicionado. Sabe-se que tais células são capazes de gerar uma nova hematopoiese bem como que o benefício do aumento de dose de CD34 + estende-se de aproximadamente 2 x 106 CD34/Kg a 5 x 106 CD34/Kg do receptor. A determinação do número de CD34 baseia-se no número total de CD34, porém sabe-se que apenas uma pequena porção celular do grupo de CD34 está associada à recuperação medular. Uma maneira de refinar a detecção desse grupo de células quando comparado com a quantificação do CD34 total, é a análise citométrica dos padrões de tamanho e granularidade citoplasmática. No contexto do TCTH autólogo e algumas vezes no TCTH alogênico, onde a infusão das células precursoras é feita com intervalo superior a três dias após a sua coleta, o congelamento das CTH CD34 +as faz-se necessário para que as células permaneçam viáveis. O agente crioprotetor mais comumente usado é o Dimetilsulfóxido (DMSO), que em temperaturas extremamente baixas protege as CTH da morte celular, porém em temperatura ambiente torna-se tóxico. As reações adversas do receptor no momento da infusão são atribuídas, em geral, ao DMSO. Portanto existem diferentes protocolos de congelamento de CTH que usam diferentes concentrações desse agente, com o intuito de reduzir as reações adversas e, ao mesmo tempo, evitar a morte celular decorrente de temperaturas baixas. Alguns estudos concluem que a viabilidade das CTH congeladas pode ser mantida com concentrações baixas de DMSO ou com celularidade elevada nos produtos congelados. Além do DMSO, a albumina e o Hidroxetilamido (HES) são usados como adjuvantes na proteção celular ao frio. Alguns protocolos de criopreservação usam apenas o DMSO enquanto outros indicam a necessidade do uso dos três agentes juntos. Não há consenso a respeito do protocolo de criopreservação ideal. Um expressivo número de trabalhos sugere o uso do DMSO 5 a 10% juntamente com a albumina 20% e HES 6% em enxertos com celularidade até 3 x 108 células nucleadas/ml, porém existem sugestões de protocolos diferentes desse padrão que usam o DMSO como agente único assim como concentrações menores de DMSO. Com relação ao efeito tóxico do DMSO, os eventos adversos do paciente no momento da infusão são atribuídos diretamente a ele. Porém evidências recentes apontam outras possíveis causas: citocinas liberadas durante o período de armazenamento e infundidas com o enxerto e micro-agregados leucocitários decorrentes da elevada celularidade do enxerto. O presente estudo pretendeu verificar a viabilidade das CTH através da medida da Anexina-V e 7-AAD pela técnica de citometria de fluxo usando-se diferentes concentrações de DMSO, bem como comparou tal desfecho entre amostras que foram congeladas apenas com DMSO e amostras congeladas com DMSO, HES e albumina. Além disso, foram verificados os níveis de citocinas inflamatórias nos enxertos e sua relação com a concentração de DMSO. / Bone Marrow Transplantation (BMT) is based on the principle of hematopoietic CD34 stem cells infusion in a conditioned recipient. It is known that such cells are capable of generating a new hematopoiesis, as well as known that the benefit of the increase of CD34 dose is goes best when it is between from 2 and to 5 x 106 CD34 by patient’s body weight. The CD34 determination is based on the total CD34 number. However it is known that only a small portion of the CD34 population is related to the marrow repopulating capacity. An alternative way of detecting such cells when compared to total CD34 dose is the cytometric analysis of citoplasmatic granularity and size patterns. In the autologous BMT context and, sometimes in the allogeneic type where the graft infusion occurs more than three days after the graft harvest, the CD34 cells freezing is necessary to keep their viability. The crioprotective agent most commonly used is the DMSO, which at extremely low temperatures this agent protects the CD34 cells from dying. However at temperatures above 30°C it became toxic and causing adverse events in the patient receiving them. The adverse reactions at the infusion moment in general are linked to DMSO, thus there are some different cryopreservative protocols using different DMSO concentrations aiming to reduce the incidence of collateral damage and at the same time avoid the CD34 from dying at low temperatures. Some studies conclude that CD34 viability can be maintained with the use of high mononuclear cellularity in the graft or with low DMSO concentrations. Besides DMSO, albumin and Hydroxietilstarch (HES) are cryoprotectants adjuvants. Some Cryopreservation protocols only use DMSO as cryoprotective agent, while others indicate the three agents together. There is no consensus about the ideal cryopreservation protocol. An important number of studies suggests the use of DMSO 5 to 10% with albumin 20% and HES 6% in grafts with cellularity number of no more than 3 x 108 cells/ml, however there are some new different protocols that use DMSO alone and at lower concentrations. As to adverse events during the infusion moment, it is known that DMSO causes the effects. However, there are evidences that other causes could cause these events: cytokines released during the storage freezing time and infused with the graft and leukocyte micro-clots caused by the high cellularity in the graft. The present study aimed to study the viability of CD34 cells using the Annexin-V and 7-AAD apoptosis reagents through the flow cytometry technique in different DMSO concentrations as well as compared such outcome among the samples only frozen with DMSO and samples frozen with DMSO, HES and albumin. Besides, it was verified the inflammatory cytokine levels and their relationship with the DMSO concentration.
29

Efeito da concentração e combinação de crioprotetores na viabilidade medida por citometria de fluxo das células tronco hematopoiéticas congeladas em freezer mecânico

Fischer, Gustavo Brandão January 2014 (has links)
O Transplante de Células Tronco Hematopoiéticas (TCTH) baseia-se no princípio de infusão de Células Tronco Hematopoiéticas (CTH) CD34 + num receptor condicionado. Sabe-se que tais células são capazes de gerar uma nova hematopoiese bem como que o benefício do aumento de dose de CD34 + estende-se de aproximadamente 2 x 106 CD34/Kg a 5 x 106 CD34/Kg do receptor. A determinação do número de CD34 baseia-se no número total de CD34, porém sabe-se que apenas uma pequena porção celular do grupo de CD34 está associada à recuperação medular. Uma maneira de refinar a detecção desse grupo de células quando comparado com a quantificação do CD34 total, é a análise citométrica dos padrões de tamanho e granularidade citoplasmática. No contexto do TCTH autólogo e algumas vezes no TCTH alogênico, onde a infusão das células precursoras é feita com intervalo superior a três dias após a sua coleta, o congelamento das CTH CD34 +as faz-se necessário para que as células permaneçam viáveis. O agente crioprotetor mais comumente usado é o Dimetilsulfóxido (DMSO), que em temperaturas extremamente baixas protege as CTH da morte celular, porém em temperatura ambiente torna-se tóxico. As reações adversas do receptor no momento da infusão são atribuídas, em geral, ao DMSO. Portanto existem diferentes protocolos de congelamento de CTH que usam diferentes concentrações desse agente, com o intuito de reduzir as reações adversas e, ao mesmo tempo, evitar a morte celular decorrente de temperaturas baixas. Alguns estudos concluem que a viabilidade das CTH congeladas pode ser mantida com concentrações baixas de DMSO ou com celularidade elevada nos produtos congelados. Além do DMSO, a albumina e o Hidroxetilamido (HES) são usados como adjuvantes na proteção celular ao frio. Alguns protocolos de criopreservação usam apenas o DMSO enquanto outros indicam a necessidade do uso dos três agentes juntos. Não há consenso a respeito do protocolo de criopreservação ideal. Um expressivo número de trabalhos sugere o uso do DMSO 5 a 10% juntamente com a albumina 20% e HES 6% em enxertos com celularidade até 3 x 108 células nucleadas/ml, porém existem sugestões de protocolos diferentes desse padrão que usam o DMSO como agente único assim como concentrações menores de DMSO. Com relação ao efeito tóxico do DMSO, os eventos adversos do paciente no momento da infusão são atribuídos diretamente a ele. Porém evidências recentes apontam outras possíveis causas: citocinas liberadas durante o período de armazenamento e infundidas com o enxerto e micro-agregados leucocitários decorrentes da elevada celularidade do enxerto. O presente estudo pretendeu verificar a viabilidade das CTH através da medida da Anexina-V e 7-AAD pela técnica de citometria de fluxo usando-se diferentes concentrações de DMSO, bem como comparou tal desfecho entre amostras que foram congeladas apenas com DMSO e amostras congeladas com DMSO, HES e albumina. Além disso, foram verificados os níveis de citocinas inflamatórias nos enxertos e sua relação com a concentração de DMSO. / Bone Marrow Transplantation (BMT) is based on the principle of hematopoietic CD34 stem cells infusion in a conditioned recipient. It is known that such cells are capable of generating a new hematopoiesis, as well as known that the benefit of the increase of CD34 dose is goes best when it is between from 2 and to 5 x 106 CD34 by patient’s body weight. The CD34 determination is based on the total CD34 number. However it is known that only a small portion of the CD34 population is related to the marrow repopulating capacity. An alternative way of detecting such cells when compared to total CD34 dose is the cytometric analysis of citoplasmatic granularity and size patterns. In the autologous BMT context and, sometimes in the allogeneic type where the graft infusion occurs more than three days after the graft harvest, the CD34 cells freezing is necessary to keep their viability. The crioprotective agent most commonly used is the DMSO, which at extremely low temperatures this agent protects the CD34 cells from dying. However at temperatures above 30°C it became toxic and causing adverse events in the patient receiving them. The adverse reactions at the infusion moment in general are linked to DMSO, thus there are some different cryopreservative protocols using different DMSO concentrations aiming to reduce the incidence of collateral damage and at the same time avoid the CD34 from dying at low temperatures. Some studies conclude that CD34 viability can be maintained with the use of high mononuclear cellularity in the graft or with low DMSO concentrations. Besides DMSO, albumin and Hydroxietilstarch (HES) are cryoprotectants adjuvants. Some Cryopreservation protocols only use DMSO as cryoprotective agent, while others indicate the three agents together. There is no consensus about the ideal cryopreservation protocol. An important number of studies suggests the use of DMSO 5 to 10% with albumin 20% and HES 6% in grafts with cellularity number of no more than 3 x 108 cells/ml, however there are some new different protocols that use DMSO alone and at lower concentrations. As to adverse events during the infusion moment, it is known that DMSO causes the effects. However, there are evidences that other causes could cause these events: cytokines released during the storage freezing time and infused with the graft and leukocyte micro-clots caused by the high cellularity in the graft. The present study aimed to study the viability of CD34 cells using the Annexin-V and 7-AAD apoptosis reagents through the flow cytometry technique in different DMSO concentrations as well as compared such outcome among the samples only frozen with DMSO and samples frozen with DMSO, HES and albumin. Besides, it was verified the inflammatory cytokine levels and their relationship with the DMSO concentration.
30

Efeito da concentração e combinação de crioprotetores na viabilidade medida por citometria de fluxo das células tronco hematopoiéticas congeladas em freezer mecânico

Fischer, Gustavo Brandão January 2014 (has links)
O Transplante de Células Tronco Hematopoiéticas (TCTH) baseia-se no princípio de infusão de Células Tronco Hematopoiéticas (CTH) CD34 + num receptor condicionado. Sabe-se que tais células são capazes de gerar uma nova hematopoiese bem como que o benefício do aumento de dose de CD34 + estende-se de aproximadamente 2 x 106 CD34/Kg a 5 x 106 CD34/Kg do receptor. A determinação do número de CD34 baseia-se no número total de CD34, porém sabe-se que apenas uma pequena porção celular do grupo de CD34 está associada à recuperação medular. Uma maneira de refinar a detecção desse grupo de células quando comparado com a quantificação do CD34 total, é a análise citométrica dos padrões de tamanho e granularidade citoplasmática. No contexto do TCTH autólogo e algumas vezes no TCTH alogênico, onde a infusão das células precursoras é feita com intervalo superior a três dias após a sua coleta, o congelamento das CTH CD34 +as faz-se necessário para que as células permaneçam viáveis. O agente crioprotetor mais comumente usado é o Dimetilsulfóxido (DMSO), que em temperaturas extremamente baixas protege as CTH da morte celular, porém em temperatura ambiente torna-se tóxico. As reações adversas do receptor no momento da infusão são atribuídas, em geral, ao DMSO. Portanto existem diferentes protocolos de congelamento de CTH que usam diferentes concentrações desse agente, com o intuito de reduzir as reações adversas e, ao mesmo tempo, evitar a morte celular decorrente de temperaturas baixas. Alguns estudos concluem que a viabilidade das CTH congeladas pode ser mantida com concentrações baixas de DMSO ou com celularidade elevada nos produtos congelados. Além do DMSO, a albumina e o Hidroxetilamido (HES) são usados como adjuvantes na proteção celular ao frio. Alguns protocolos de criopreservação usam apenas o DMSO enquanto outros indicam a necessidade do uso dos três agentes juntos. Não há consenso a respeito do protocolo de criopreservação ideal. Um expressivo número de trabalhos sugere o uso do DMSO 5 a 10% juntamente com a albumina 20% e HES 6% em enxertos com celularidade até 3 x 108 células nucleadas/ml, porém existem sugestões de protocolos diferentes desse padrão que usam o DMSO como agente único assim como concentrações menores de DMSO. Com relação ao efeito tóxico do DMSO, os eventos adversos do paciente no momento da infusão são atribuídos diretamente a ele. Porém evidências recentes apontam outras possíveis causas: citocinas liberadas durante o período de armazenamento e infundidas com o enxerto e micro-agregados leucocitários decorrentes da elevada celularidade do enxerto. O presente estudo pretendeu verificar a viabilidade das CTH através da medida da Anexina-V e 7-AAD pela técnica de citometria de fluxo usando-se diferentes concentrações de DMSO, bem como comparou tal desfecho entre amostras que foram congeladas apenas com DMSO e amostras congeladas com DMSO, HES e albumina. Além disso, foram verificados os níveis de citocinas inflamatórias nos enxertos e sua relação com a concentração de DMSO. / Bone Marrow Transplantation (BMT) is based on the principle of hematopoietic CD34 stem cells infusion in a conditioned recipient. It is known that such cells are capable of generating a new hematopoiesis, as well as known that the benefit of the increase of CD34 dose is goes best when it is between from 2 and to 5 x 106 CD34 by patient’s body weight. The CD34 determination is based on the total CD34 number. However it is known that only a small portion of the CD34 population is related to the marrow repopulating capacity. An alternative way of detecting such cells when compared to total CD34 dose is the cytometric analysis of citoplasmatic granularity and size patterns. In the autologous BMT context and, sometimes in the allogeneic type where the graft infusion occurs more than three days after the graft harvest, the CD34 cells freezing is necessary to keep their viability. The crioprotective agent most commonly used is the DMSO, which at extremely low temperatures this agent protects the CD34 cells from dying. However at temperatures above 30°C it became toxic and causing adverse events in the patient receiving them. The adverse reactions at the infusion moment in general are linked to DMSO, thus there are some different cryopreservative protocols using different DMSO concentrations aiming to reduce the incidence of collateral damage and at the same time avoid the CD34 from dying at low temperatures. Some studies conclude that CD34 viability can be maintained with the use of high mononuclear cellularity in the graft or with low DMSO concentrations. Besides DMSO, albumin and Hydroxietilstarch (HES) are cryoprotectants adjuvants. Some Cryopreservation protocols only use DMSO as cryoprotective agent, while others indicate the three agents together. There is no consensus about the ideal cryopreservation protocol. An important number of studies suggests the use of DMSO 5 to 10% with albumin 20% and HES 6% in grafts with cellularity number of no more than 3 x 108 cells/ml, however there are some new different protocols that use DMSO alone and at lower concentrations. As to adverse events during the infusion moment, it is known that DMSO causes the effects. However, there are evidences that other causes could cause these events: cytokines released during the storage freezing time and infused with the graft and leukocyte micro-clots caused by the high cellularity in the graft. The present study aimed to study the viability of CD34 cells using the Annexin-V and 7-AAD apoptosis reagents through the flow cytometry technique in different DMSO concentrations as well as compared such outcome among the samples only frozen with DMSO and samples frozen with DMSO, HES and albumin. Besides, it was verified the inflammatory cytokine levels and their relationship with the DMSO concentration.

Page generated in 0.0647 seconds