1 |
Development,testing and fluid interaction simulation of a bioprosthetic valve for transcatheter aortic valve implantationKemp, Iain Henry 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Bioprosthetic heart valves (BHVs) for transcatheter aortic valve implantation (TAVI) have been rapidly developing over the last decade since the first valve replacement using the TAVI technique. TAVI is a minimally invasive valve replacement procedure offering lifesaving treatment to patients who are denied open heart surgery. The biomedical engineering research group at Stellenbosch University designed a 19 mm balloon expandable BHV for TAVI in 2007/8 for testing in animal trials.
In the current study the valve was enlarged to 23 mm and 26 mm diameters. A finite element analysis was performed to aid in the design of the stents. New stencils were designed and manufactured for the leaflets using Thubrikar‟s equations as a guide. The 23 mm valve was manufactured and successfully implanted into two sheep.
Fluid structure interaction (FSI) simulations constitute a large portion of this thesis and are being recognized as an important tool in the design of BHVs. Furthermore, they provide insight into the interaction of the blood with the valve, the leaflet dynamics and valve hemodynamic performance. The complex material properties, pulsating flow, large deformations and coupling of the fluid and the physical structure make this one of the most complicated and difficult research areas within the body. The FSI simulations, of the current valve design, were performed using a commercial programme called MSC.Dytran. A validation study was performed using data collected from a cardiac pulse duplicator. The FSI model was validated using leaflet dynamics visualisation and transvalvular pressure gradient comparison. Further comparison studies were performed to determine the material model to be used and the effect of leaflet free edge length and valve diameter on valve performance. The results from the validation study correlated well, considering the limitations that were experienced. However, further research is required to achieve a thorough validation.
The comparative studies indicated that the linear isotropic material model was the most stable material model which could be used to simulate the leaflet behaviour. The free edge length of the leaflet affects the leaflet dynamics but does not greatly hinder its performance. The hemodynamic performance of the valve improves with an increase in diameter and the leaflet dynamics perform well considering the increased surface area and length.
Many limitations in the software prevented more accurate material models and flow initiation to be implemented. These limitations significantly restricted the research and confidence in the results. Further investigation regarding the implementation of FSI simulations of a heart valve using the commercial software is recommended. / AFRIKAANSE OPSOMMING: Bio-prostetiese hartkleppe (Bioprosthetic Heart Valves - BHVs) wat gebruik word vir transkateter aortaklep-inplantings (Transcatheter Aortic Valve Implantation - TAVI) het geweldig vinnige ontwikkeling getoon in die afgelope tien jaar sedert die eerste klepvervanging wat van die TAVI prosedure gebruik gemaak het. TAVI is ʼn minimaal indringende klepvervangingsprosedure wat lewensreddende behandeling bied aan pasiënte wat ope-hart sjirurgie geweier word. Die Biomediese Ingenieurswese Navorsingsgroep (BERG) by Stellenbosch Universiteit het in 2007/8 ʼn 19 mm ballon-uitsetbare BHV vir TAVI ontwerp vir eksperimente met diere, en hierdie tesis volg op die vorige projekte.
In die huidige studie is die klep vergroot na 23 mm en 26 mm in deursnee. ʼn Eindige element analise is gedoen om by te dra tot die ontwerp van die rekspalke vir die klep. Nuwe stensils is ontwerp en vervaardig vir die klepsuile, deur gebruik te maak van Thubrikar se vergelykings. Die 23 mm klep is vervaardig en suksesvol in twee skape ingeplant.
Vloeistruktuur interaksie (Fluid Structure Interaction (FSI)) simulasies vorm ‟n groot deel van die tesis en word gesien as ʼn noodsaaklike hulpmiddel in die ontwerp van BHVs. Die simulasies verskaf ook insig in die interaksie van die bloed met die klep, die klepsuil-dinamika en die klep se hemodinamiese werkverrigting. Die komplekse materiaal eienskappe, polsende vloei, grootskaalse vervorming, die verbinding van die vloeistof en die fisiese struktuur maak van hierdie een van die mees gekompliseerde voorwerpe om te simuleer. Die FSI simulasies van die huidige ontwerp, is uitgevoer deur van kommersiële sagteware, MSC.Dytran, gebruik te maak. ʼn Geldigheidstudie wat data gebruik het vanaf die hartklop-nabootser, is uitgevoer. Die FSI model word geverifieer deur klepsuil dinamika visualisering en ʼn vergelyking van die drukgradiënt gebruik te maak. Verdere vergelykende studies is uitgevoer om te bepaal watter materiaal model om te gebruik, asook die uitwerking van die klepsuil-vrye rand en klepdeursnee op die klep se werkverrigting. Die resultate van die studie korreleer goed, in ag genome die beperkings wat ervaar is. Verdere navorsing is egter nodig vir ʼn volledige geldigheidstudie. Vergelykende studies het getoon dat die liniêre isotropiese materiaalmodel die meer stabiele materiaalmodel is wat kan gebruik word om klepsuilgedrag te simuleer. Die vrye-rand lengte van die klepsuil affekteer die dinamika van die klepsuil, maar belemmer nie die werkverrigting grootliks nie. Die hemodinamiese werkverrigting van die klep verbeter met die toename in deursnee en die klepsuil-dinamika vertoon goed in ag genome die verhoogde oppervlak area en lengte.
Die vele beperkings in die sagteware het die implementering van meer akkurate materiaalmodelle verhoed. Hierdie beperkings het ʼn verminderde vertroue in die resultate tot gevolg gehad. Verdere ondersoek rakende die implementering van die FSI simulasies van ʼn hartklep deur kommersieel beskikbare sagteware te gebruik, word aanbevel.
|
2 |
Core Lab Adjudication of the ACURATE neo2 Hemodynamic Performance Using Computed-Tomography-Corrected Left Ventricular Outflow Tract AreaElkoumy, Ahmed, Rück, Andreas, Kim, Won-Keun, Abdel-Wahab, Mohamed, Abdelshafy, Mahmoud, De Backer, Ole, Elzomor, Hesham, Hengstenberg, Christian, Mohamed, Sameh K., Saleh, Nawzad, Arsang-Jang, Shahram, Bjursten, Henrik, Simpkin, Andrew, Meduri, Christopher U., Soliman, Osama 23 May 2024 (has links)
(1) Background: Hemodynamic assessment of prosthetic heart valves using conventional
2D transthoracic Echocardiography-Doppler (2D-TTE) has limitations. Of those, left ventricular
outflow tract (LVOT) area measurement is one of the major limitations of the continuity equation,
which assumes a circular LVOT. (2) Methods: This study comprised 258 patients with severe aortic
stenosis (AS), who were treated with the ACURATE neo2. The LVOT area and its dependent Dopplerderived
parameters, including effective orifice area (EOA) and stroke volume (SV), in addition
to their indexed values, were calculated from post-TAVI 2D-TTE. In addition, the 3D-LVOT area
from pre-procedural MDCT scans was obtained and used to calculate corrected Doppler-derived
parameters. The incidence rates of prosthesis patient mismatch (PPM) were compared between the
2D-TTE and MDCT-based methods (3) Results: The main results show that the 2D-TTE measured
LVOT is significantly smaller than 3D-MDCT (350.4 62.04 mm2 vs. 405.22 81.32 mm2) (95%
Credible interval (CrI) of differences: 55.15, 36.09), which resulted in smaller EOA (2.25 0.59 vs.
2.58 0.63 cm2) (Beta = 0.642 (95%CrI of differences: 0.85, 0.43), and lower SV (73.88 21.41 vs.
84.47 22.66 mL), (Beta = 7.29 (95% CrI: 14.45, 0.14)), respectively. PPM incidence appears more
frequent with 2D-TTE- than 3D-MDCT-corrected measurements (based on the EOAi) 8.52% vs. 2.32%,
respectively. In addition, significant differences regarding the EOA among the three valve sizes (S, M
and L) were seen only with the MDCT, but not on 2D-TTE. (4) Conclusions: The corrected continuity
equation by combining the 3D-LVOT area from MDCT with the TTE Doppler parameters might
provide a more accurate assessment of hemodynamic parameters and PPM diagnosis in patients
treated with TAVI. The ACURATE neo2 THV has a large EOA and low incidence of PPM using the
3D-corrected LVOT area than on 2D-TTE. These findings need further confirmation on long-term
follow-up and in other studies.
|
3 |
Performance hémodynamique de prothèses valvulaires aortiques percutanées et stratégies d'implantation lors de procédures "valve-in-valve" : études in vitro et in vivo / Hemodynamic performance of transcatheter aortic valve prostheses and strategie of implantation for valve-in-valve procedures : in vitro and in vivo studiesZenses, Anne-Sophie 17 October 2018 (has links)
L’implantation valvulaire aortique percutanée (TAVI) a émergé comme une alternative à la chirurgie pour les patients avec sténose sévère et haut risque chirurgical. Cette technique s’étend à une population plus large (e.g. anatomie plus complexe, risque chirurgical plus bas), ainsi qu'au traitement Valve-in-Valve (ViV) des bioprothèses (BPs) chirurgicales défaillantes. Cependant, deux complications majeures en limitent la généralisation. En TAVI « classique », la présence de fuites péripothétiques a été associée à une mortalité augmentée. Les effets du surdimensionnement de la prothèse percutanée pour assurer son étanchéité, ou de la forme de l’anneau souvent non circulaire, sur la performance hémodynamique, sont mal connus. En ViV, la présence de hauts gradients est fréquente et associée à une mortalité augmentée. Les BPs de taille nominale ≤ 21 mm et le mode de dégénérescence par sténose, facteurs mis en cause dans la sténose résiduelle et associés à une mortalité augmentée, ne sont pas assez spécifiques et il n’existe actuellement aucune recommandation pour le traitement des petites BPs. Par ailleurs, le bénéfice hémodynamique réel du ViV par rapport aux statuts avant ViV n’a pas été étudié.L’objectif général de ce travail doctoral est de comprendre les interactions entre la prothèse percutanée et l’anneau aortique ou la BP à traiter, impliquées dans la performance hémodynamique, en particulier dans des conditions d’implantation complexes, afin d’étendre les indications du TAVI. En ViV, le défi est de préciser les facteurs associés à sa performance et son utilité hémodynamique et de proposer des stratégies d’implantation afin d’optimiser le succès de la procédure. / Transcatheter aortic valve implantation (TAVI) has emerged as an alternative to surgery for patients with severe aortic stenosis and high surgical risk. This technique is extending to a wider population (e.g. with more complex anatomy or lower surgical risk), as well as to patients with degenerated surgical bioprostheses (BPs). However, two major concerns remain limiting. Regarding “classical TAVI”, periprosthetic leaks have been associated with increased mortality. Oversizing is used to secure the device within the aortic annulus which is often non circular. The effects of oversizing and annulus shape on the hemodynamic performance are unknown. Regarding ViV implantations, elevated post-procedural gradients are common and have been associated with increased mortality. The principal factors associated with this residual stenosis as well as with increased risk of mortality, have been BPs label size ≤ 21 mm and mode of failure by stenosis. These factors are not specific enough and there is currently no recommendation for the treatment of small BPs. Besides, the actual hemodynamic benefit associated with ViV has not been evaluated (vs. pre ViV status).The general objective of this work is to understand the interactions between the transcatheter prosthesis and the aortic annulus or the BP to be treated, which impact the hemodynamic performance, especially in complex conditions of implantation, in order to extend the indications of TAVI. In the context of ViV, the objective is to specify the factors associated with the hemodynamic performance and utility of the treatment. The final aim is to provide strategies of implantation in order to optimize the success of the procedure.
|
Page generated in 0.0921 seconds