• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluation of chlorsulfuron for weed control in winter wheat (Triticum aestivum L.) and its effect on subsequent recropping with soybeans (Glycine max (L.) Merr.) or grain sorghum (Sorghum bicolor (L.) Moench)

Leetch, Michael Scott. January 1985 (has links)
Call number: LD2668 .T4 1985 L435 / Master of Science
12

Metabolism of 3-isopropyl-4H-2,1,3-benzothiadiazin-4-(3H)-one-2,2-dioxide (bentazon) in agitated and non-agitated sediment

Gutierrez, David Cortez 01 August 1974 (has links)
Bentazon, (3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-l-2,2-dioxide) a new experimental herbicide, was studied under the effects of sterile and non-sterile conditions, 12 hours light: 12 hours dark and totally dark conditions, and agitated and non-agitated conditions in aquatic sediment. The effects of the different levels of BOD/COD values on the decomposition of Bentazon were studied. Photoperiod, sterility, and BOD/COD levels appeared to have no influence in the breakdown of Bentazon. Agitation-time interaction appeared to be the only factor that influenced the more rapid degradation of Bentazon. Bentazon was the major 14C-residue found in the water; it was followed by an unknown. The third major metabolite was 2-amino-N-isopropyl benzamide, followed by anthranilic acid and N-isopropylsulfamoyl anthranilic acid at minor amounts. Only Bentazon was found in the soil. The ratio of radioactivity in the soil vs. the water was 1:1 in the agitated tanks and 1:3 in the non-agitated tanks. After 128 days, the concentration of Bentazon in the water decreased to an average of 50% in the agitated tanks and an average of 80% in the non-agitated tanks.
13

Evaluation of several selective postemergence grass herbicides for use in annual flower and groundcover plantings

Graber, Debra A. Terry. January 1985 (has links)
Call number: LD2668 .T4 1985 G672 / Master of Science
14

RESPOSTAS ADAPTATIVAS DE Bacillus megaterium Mes13 AO HERBICIDA CALLISTO: DEGRADAÇÃO, COMETABOLISMO E MODIFICAÇÕES NA MEMBRANA PLASMÁTICA

Steckling, Bruna 13 March 2013 (has links)
Made available in DSpace on 2017-07-21T19:59:58Z (GMT). No. of bitstreams: 1 Bruna Steckling.pdf: 1617437 bytes, checksum: a310841fa34ee2fb3a59be3ff493fbe8 (MD5) Previous issue date: 2013-03-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Agrochemicals have become necessary to improve crops yields and provide the increasing demand for foods. Nevertheless, pesticides can persist in the environment and be harmful to non target organisms. Mesotrione, the active ingredient of Callisto, is a selective herbicide recommended for pre and post-emergent weed control in corn culture, with high leaching potential, and it has the ability to inhibit the activity of HPPD enzyme, interfering with the synthesis of carotenoids in target plants. The aim of this work was to evaluate the strategies used by the strain Bacillus megaterium Mes13 to avoid toxic effects of Callisto and its active substance, mesotrione, by analyzing the differential expression of antioxidative enzymes, mesotrione degradation, and changes in membrane structure. There were no specific responses from isozymes to herbicides. Catalase activity at Callisto treatment was lower than control, suggestingother mechanisms affecting cellular defense. Lipid peroxidation (MDA), which depends on saturation degree of membrane fatty acids, was lower at Callisto treatment, and changes in bacterial membrane were observed at Callisto treatment, probably protecting membrane against lipid peroxidation. Mesotrione was used neither as C nor N source for growing of Bacillus megaterium, although degradation of mesotrione was higher at minimal medium with no N source, suggesting that herbicide degradation occurs as a cometabolism. Probably the membrane modifications and mesotrione degradation made this bacteria able to tolerate the herbicides at experimental conditions. / O uso de agroquímicos se faz necessário para aumentar a produtividade e suprir a crescente demanda por alimentos. Entretanto, estes químicos podem persistir no meio ambiente e serem danosos aos organismos não-alvo. O mesotrione é um herbicida seletivo indicado para o controle pré e pós-emergente de plantas daninhas na cultura do milho com alto potencial de lixiviação, que apresenta a capacidade de inibir a atividade da enzima 4-hidroxifenil-piruvato-dioxigenase (HPPD), interferindo na síntese de carotenóides. Neste trabalho analisamos três possíveis estratégias utilizadas pela linhagem Bacillus megaterium Mes13 para tolerar o herbicida Callisto e seu princípio ativo, mesotrione: expressão de enzimas antioxidativas, degradação do princípio ativo e modificações na estrutura de lipídeos da célula. Avaliações de atividade e perfil proteico de catalase (CAT) e superóxido dismutase (SOD) foram realizadas para avaliar os possíveis danos gerados pelo contato da bactéria com o herbicida. Nenhuma isoforma específica foi observada em resposta aos tratamentos contendo os xenobióticos e a atividade de CAT foi mais baixa no tratamento contendo Callisto indicando outros possíveis mecanismos de defesa celular. Corroborando estes resultados, as análises de peroxidação lipídica (MDA), que dependem do estado de saturação de lipídeos de membrana, mostraram taxas mais baixas no tratamento com Callisto. Modificações na membrana bacteriana foram observadas nos tratamentos contendo Callisto, o que, possivelmente diminuíram as taxas de peroxidação lipídica. Esta linhagem não utiliza mesotrione como fonte de nitrogênio e carbono, contudo, o processo de degradação do herbicida foi mais eficiente na ausência de Nitrato de Sódio em meio de cultura. A degradação provavelmente se dá por uma enzima inespecífica. Na ausência da fonte primária de nitrogênio, esta linhagem degrada o mesotrione por cometabolismo. Provavelmente as modificações na membrana plasmática aliada a degradação da molécula do xenobiótico conferiram a linhagem capacidade de tolerar a presença dos herbicidas nas condições experimentais testadas. Palavras-chave: SOD, CAT, MDA, Biodegradação de herbicidas, Fonte de nitrogênio, modificações na membrana plasmática.

Page generated in 0.1193 seconds