• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 245
  • 214
  • 138
  • 27
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 14
  • 6
  • 5
  • 4
  • 4
  • Tagged with
  • 831
  • 244
  • 189
  • 153
  • 136
  • 99
  • 80
  • 75
  • 72
  • 56
  • 56
  • 52
  • 47
  • 44
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

The leaching of metolachlor, atrazine, and two atrazine metabolites in two corn fields in Quebec : a monitoring study and validation of Gleams model

Masse, Lucie January 1990 (has links)
A field study was undertaken during the growing seasons of 1988 and 1989 to investigate leaching characteristics of metolachlor, atrazine and two atrazine metabolites in two agricultural soils of Quebec, namely a sand and a loam field. In both years, atrazine was detected in higher levels in the groundwater of the loam field than of the sand field. Deethylatrazine was the only metabolite found in any significant quantity in soil in 1988 and in groundwater in 1989. Deisopropylatrazine was detected in groundwater at the beginning and at the end of the 1988 season and levels were similar in both fields. Metolach or was never detected in groundwater. / GLEAMS predictions favourably compared to field results at the 0-20 cm depth in both years. Half-life, however, had to be reduced by half in 1989 since higher temperature had increased dissipation. GLEAMS has not predicted leaching past 20 cm in either field in 1988 and 1989. During a dry summer, such as 1988 and 1989, leaching is mostly due to macropore flow and desorption of residues, two processes which are difficult to predict with existing models.
372

Degradation of atrazine and related triazines in Hawaiian soils

Obien, S. R (Santiago Rigonan) January 1970 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii, 1970. / Bibliography: leaves [215]-226. / Microfilm. / xix, 226 l diagrs
373

Mechanisms of herbicide resistance in wild oats (Avena spp.) / Chanya Maneechote.

Maneechote, Chanya January 1995 (has links)
Bibliography : leaves 159-184. / xv, 191 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This study found at least three mechanisms of resistance to the acetyl coenzyme A carboxylase (ACCase)-inhibiting herbicides. A modified target -site was responsible for moderate and high resistance to herbicides at the whole plant level. Enhanced herbicide metabolism and reduced translocation of herbicide to the target site was observed in one resistant biotype each. / Thesis (Ph.D.)--University of Adelaide, Dept. of Crop Protection, 1996
374

Resistance to acetolactate synthase-inhibiting herbicides in Sonchus oleraceus, Sisymbrium orientale and Brassica tournefortii / Peter Boutsalis.

Boutsalis, Peter January 1996 (has links)
Bibliography: leaves 147-163. / ix, 164 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The aim of this thesis is to confirm the resistance status of three purported resistant weed species by herbicide screening of outdoor pot grown plants. Field experiments are set up to investigate changes in dormancy and seedbank life of the resistant populations over a three year period. After determining the herbicide resistance spectrum of the resistant biotypes, genetic crosses between resistant and susceptible plants are performed to follow the mode of inheritance of acetolactate synthase (ALS) resistance. "In vitro" ALS enzyme assays in the presence of various herbicides are carried out to reveal a modified ALS enzyme as the main mechanism of resistance in all cases. A molecular investigation of the ALS gene is performed to identify mutations responsible for endowing a resistant enzyme. / Thesis (Ph.D.)--University of Adelaide, Dept. of Crop Protection, 1996
375

Nitrogen fixation by pasture legumes : effects of herbicides and defoliation / by Abolhassan Fajri.

Fajri, Abolhassan January 1996 (has links)
Bibliography: leaves 209-254. / xv, 254 leaves : ill. (chiefly col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Experiments detailed in this thesis, evaluate the impact of various herbicides and herbicide mixtures on the growth, nodulation and nitrogen fixation of annual pasture legumes, the efficacy of the herbicides for weed control, and the potential role of mechanical defoliation to replace herbicides, leading to lower cost and more sustainable farming systems. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 1996
376

Weed resistance risk management in glyphosate-resistant cotton

Werth, Jeff Alan January 2006 (has links)
The introduction of glyphosate resistance into Australian cotton systems will have an effect on conventional weed management practices, the weed species present and the risk of glyphosate resistance evolving in weed species. Therefore, it is important that the effects of these management practices, particularly a potential reduction in Integrated Weed Management (IWM) practices, be examined to determine their impact on weed population dynamics and resistance selection. The study began in 2003 with a survey of 40 growers in four major cotton growing regions in Australia to gain an understanding of how adoption of glyphosate resistance had influenced the weed spectrum, weed management practices and herbicide use after three years of glyphosate-resistant cotton being available. The 10 most common weeds reported on cotton fields were the same in glyphosate-resistant and conventional fields. In this survey, herbicide use patterns were altered by the adoption of glyphosate-resistant cotton with up to six times more glyphosate being applied and with 21% fewer growers applying pre-emergence herbicides in glyphosate-resistant cotton fields. Other weed control practices, such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing, were only reduced marginally. A systems experiment was conducted to determine differences in the population dynamics of Echinochloa crus-galli (barnyardgrass) and Urochloa panicoides (liverseed grass) under a range of weed management regimes in a glyphosate-resistant cotton system. These treatments ranged from a full IWM system to a system based soley on the use of glyphosate. The experiment investigated the effect of the treatments on the soil seed bank, weed germination patterns and weed numbers in the field. All applied treatments resulted in commercially acceptable control of the two grass weeds. However, the treatments containing soil-applied residual herbicides proved to be more effective over the period of the experiment. The treatment with a reduced residual herbicide program supplemented with glyphosate had a level of control similar to the full IWM treatments with less input, providing a more economical option. The effectiveness of these treatments in the long-term was examined in a simulation model to determine the likelihood of glyphosate resistance evolving using barnyardgrass and liverseed grass as model weeds. Seed production and above-ground biomass of barnyardgrass and liverseed grass in competition with cotton were measured. In all experiments, seed production and biomass plant⁻¹ decreased as weed density increased while seed production and biomass m⁻¹ tended to increase. Seed production m⁻¹ reached 40,000 and 60,000 for barnyardgrass and liverseed grass, respectively. In 2004-05, weeds were also planted 6 weeks and 12 weeks after the cotton was planted. Biomass and seed production of the two weeds planted 6 weeks after cotton were significantly reduced with seed production declining to 12,000 and 2,500 seeds m⁻¹ row for barnyardgrass and liverseed grass, respectively. Weeds planted 12 weeks after cotton planting failed to emerge. This experiment highlighted the importance of early season weed control and effective management of weeds that are able to produce high seed numbers. A glyphosate dose-mortality experiment was conducted in the field to determine levels of control of barnyardgrass and liverseed grass. Glyphosate provided effective control of both species with over 85% control when the rate applied was greater than 690 g ae ha⁻¹. Dose-mortality curves for both species were obtained for use in the glyphosate resistance model. Data from the experimental work were combined to develop a glyphosate resistance model. Outputs from this model suggest that if glyphosate were used as the only form of weed control, resistance in weeds is likely to eventuate after 12 to 17 years, depending on the characteristics of the weed species, initial resistance gene frequencies and any associated fitness penalties. If glyphosate was used in conjunction with one other weed control method, resistance was delayed but not prevented. The simulations suggested that when a combination of weed control options was employed in addition to glyphosate, resistance would not evolve over the 30-year period of the simulation. These simulations underline the importance of an integrated strategy in weed management to prevent glyphosate resistance evolving from the use of glyphosate-resistant cotton. Current management conditions of growing glyphosate-resistant (Roundup Ready &reg) cotton should therefore prevent glyphosate resistance evolution. / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2006.
377

Resistance to acetolactate synthase-inhibiting herbicides in Sonchus oleraceus, Sisymbrium orientale and Brassica tournefortii / Peter Boutsalis.

Boutsalis, Peter January 1996 (has links)
Bibliography: leaves 147-163. / ix, 164 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The aim of this thesis is to confirm the resistance status of three purported resistant weed species by herbicide screening of outdoor pot grown plants. Field experiments are set up to investigate changes in dormancy and seedbank life of the resistant populations over a three year period. After determining the herbicide resistance spectrum of the resistant biotypes, genetic crosses between resistant and susceptible plants are performed to follow the mode of inheritance of acetolactate synthase (ALS) resistance. "In vitro" ALS enzyme assays in the presence of various herbicides are carried out to reveal a modified ALS enzyme as the main mechanism of resistance in all cases. A molecular investigation of the ALS gene is performed to identify mutations responsible for endowing a resistant enzyme. / Thesis (Ph.D.)--University of Adelaide, Dept. of Crop Protection, 1996
378

Weed resistance risk management in glyphosate-resistant cotton

Werth, Jeff Alan January 2006 (has links)
The introduction of glyphosate resistance into Australian cotton systems will have an effect on conventional weed management practices, the weed species present and the risk of glyphosate resistance evolving in weed species. Therefore, it is important that the effects of these management practices, particularly a potential reduction in Integrated Weed Management (IWM) practices, be examined to determine their impact on weed population dynamics and resistance selection. The study began in 2003 with a survey of 40 growers in four major cotton growing regions in Australia to gain an understanding of how adoption of glyphosate resistance had influenced the weed spectrum, weed management practices and herbicide use after three years of glyphosate-resistant cotton being available. The 10 most common weeds reported on cotton fields were the same in glyphosate-resistant and conventional fields. In this survey, herbicide use patterns were altered by the adoption of glyphosate-resistant cotton with up to six times more glyphosate being applied and with 21% fewer growers applying pre-emergence herbicides in glyphosate-resistant cotton fields. Other weed control practices, such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing, were only reduced marginally. A systems experiment was conducted to determine differences in the population dynamics of Echinochloa crus-galli (barnyardgrass) and Urochloa panicoides (liverseed grass) under a range of weed management regimes in a glyphosate-resistant cotton system. These treatments ranged from a full IWM system to a system based soley on the use of glyphosate. The experiment investigated the effect of the treatments on the soil seed bank, weed germination patterns and weed numbers in the field. All applied treatments resulted in commercially acceptable control of the two grass weeds. However, the treatments containing soil-applied residual herbicides proved to be more effective over the period of the experiment. The treatment with a reduced residual herbicide program supplemented with glyphosate had a level of control similar to the full IWM treatments with less input, providing a more economical option. The effectiveness of these treatments in the long-term was examined in a simulation model to determine the likelihood of glyphosate resistance evolving using barnyardgrass and liverseed grass as model weeds. Seed production and above-ground biomass of barnyardgrass and liverseed grass in competition with cotton were measured. In all experiments, seed production and biomass plant⁻¹ decreased as weed density increased while seed production and biomass m⁻¹ tended to increase. Seed production m⁻¹ reached 40,000 and 60,000 for barnyardgrass and liverseed grass, respectively. In 2004-05, weeds were also planted 6 weeks and 12 weeks after the cotton was planted. Biomass and seed production of the two weeds planted 6 weeks after cotton were significantly reduced with seed production declining to 12,000 and 2,500 seeds m⁻¹ row for barnyardgrass and liverseed grass, respectively. Weeds planted 12 weeks after cotton planting failed to emerge. This experiment highlighted the importance of early season weed control and effective management of weeds that are able to produce high seed numbers. A glyphosate dose-mortality experiment was conducted in the field to determine levels of control of barnyardgrass and liverseed grass. Glyphosate provided effective control of both species with over 85% control when the rate applied was greater than 690 g ae ha⁻¹. Dose-mortality curves for both species were obtained for use in the glyphosate resistance model. Data from the experimental work were combined to develop a glyphosate resistance model. Outputs from this model suggest that if glyphosate were used as the only form of weed control, resistance in weeds is likely to eventuate after 12 to 17 years, depending on the characteristics of the weed species, initial resistance gene frequencies and any associated fitness penalties. If glyphosate was used in conjunction with one other weed control method, resistance was delayed but not prevented. The simulations suggested that when a combination of weed control options was employed in addition to glyphosate, resistance would not evolve over the 30-year period of the simulation. These simulations underline the importance of an integrated strategy in weed management to prevent glyphosate resistance evolving from the use of glyphosate-resistant cotton. Current management conditions of growing glyphosate-resistant (Roundup Ready &reg) cotton should therefore prevent glyphosate resistance evolution. / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2006.
379

Weed resistance risk management in glyphosate-resistant cotton

Werth, Jeff Alan January 2006 (has links)
The introduction of glyphosate resistance into Australian cotton systems will have an effect on conventional weed management practices, the weed species present and the risk of glyphosate resistance evolving in weed species. Therefore, it is important that the effects of these management practices, particularly a potential reduction in Integrated Weed Management (IWM) practices, be examined to determine their impact on weed population dynamics and resistance selection. The study began in 2003 with a survey of 40 growers in four major cotton growing regions in Australia to gain an understanding of how adoption of glyphosate resistance had influenced the weed spectrum, weed management practices and herbicide use after three years of glyphosate-resistant cotton being available. The 10 most common weeds reported on cotton fields were the same in glyphosate-resistant and conventional fields. In this survey, herbicide use patterns were altered by the adoption of glyphosate-resistant cotton with up to six times more glyphosate being applied and with 21% fewer growers applying pre-emergence herbicides in glyphosate-resistant cotton fields. Other weed control practices, such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing, were only reduced marginally. A systems experiment was conducted to determine differences in the population dynamics of Echinochloa crus-galli (barnyardgrass) and Urochloa panicoides (liverseed grass) under a range of weed management regimes in a glyphosate-resistant cotton system. These treatments ranged from a full IWM system to a system based soley on the use of glyphosate. The experiment investigated the effect of the treatments on the soil seed bank, weed germination patterns and weed numbers in the field. All applied treatments resulted in commercially acceptable control of the two grass weeds. However, the treatments containing soil-applied residual herbicides proved to be more effective over the period of the experiment. The treatment with a reduced residual herbicide program supplemented with glyphosate had a level of control similar to the full IWM treatments with less input, providing a more economical option. The effectiveness of these treatments in the long-term was examined in a simulation model to determine the likelihood of glyphosate resistance evolving using barnyardgrass and liverseed grass as model weeds. Seed production and above-ground biomass of barnyardgrass and liverseed grass in competition with cotton were measured. In all experiments, seed production and biomass plant⁻¹ decreased as weed density increased while seed production and biomass m⁻¹ tended to increase. Seed production m⁻¹ reached 40,000 and 60,000 for barnyardgrass and liverseed grass, respectively. In 2004-05, weeds were also planted 6 weeks and 12 weeks after the cotton was planted. Biomass and seed production of the two weeds planted 6 weeks after cotton were significantly reduced with seed production declining to 12,000 and 2,500 seeds m⁻¹ row for barnyardgrass and liverseed grass, respectively. Weeds planted 12 weeks after cotton planting failed to emerge. This experiment highlighted the importance of early season weed control and effective management of weeds that are able to produce high seed numbers. A glyphosate dose-mortality experiment was conducted in the field to determine levels of control of barnyardgrass and liverseed grass. Glyphosate provided effective control of both species with over 85% control when the rate applied was greater than 690 g ae ha⁻¹. Dose-mortality curves for both species were obtained for use in the glyphosate resistance model. Data from the experimental work were combined to develop a glyphosate resistance model. Outputs from this model suggest that if glyphosate were used as the only form of weed control, resistance in weeds is likely to eventuate after 12 to 17 years, depending on the characteristics of the weed species, initial resistance gene frequencies and any associated fitness penalties. If glyphosate was used in conjunction with one other weed control method, resistance was delayed but not prevented. The simulations suggested that when a combination of weed control options was employed in addition to glyphosate, resistance would not evolve over the 30-year period of the simulation. These simulations underline the importance of an integrated strategy in weed management to prevent glyphosate resistance evolving from the use of glyphosate-resistant cotton. Current management conditions of growing glyphosate-resistant (Roundup Ready &reg) cotton should therefore prevent glyphosate resistance evolution. / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2006.
380

Metoder för vegetationsbekämpning på banvallar : en summering av resultat från UICs Vegetation Control Project och erfarenheter från Institutionen för landskaps- och trädgårdsteknik = Vegetation control methods on railway embarkment and track area/

Eriksson, Anna-Mia. Hansson, David. Huisman, Mark. Lundh, Jan-Erik. January 2004 (has links) (PDF)
Examensarbete. / Delrapport i FoU-projekt S 01-3284/08 "Skötsel av vegetation inom banområde"

Page generated in 0.0372 seconds