• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception d'un dispositif microfluidique de synthèse en continu du poly(acide acrylique) en milieu hétérogène eau/CO2 supercritique. / Development of a microfluidic device for the continuous synthesis of poly(acrylic acid) in a liquid water/supercritical CO2 system

Chen-Jolly, Hongyu 04 December 2014 (has links)
Ce travail de thèse rend compte de la mise en oeuvre d’un système de synthèse en continu dupoly(acide acrylique) en milieu CO2 supercritique (15 MPa et 75 °C). Nous avons conçu undispositif microfluidique résistant aux hautes pressions permettant l’écoulement de gouttes desolution aqueuse de monomère dans une phase continue constituée d’un mélangesupercritique d’éthanol dans du CO2 et contenant l’amorceur azobisisobutyronitrile (AIBN).Nous avons déterminé par spectroscopie IR la répartition des différentes espèces chimiquesdu mélange en fonction de la pression et la température, puis caractérisé la décompositionthermique de l’amorceur selon la composition du milieu réactionnel par spectroscopie UVVis.Enfin, nous avons montré que les gouttes sont comparables à des réservoirs demonomère alimentant sans cesse la phase continue. En raison de ce transfert rapide vis-à-visde la conversion de l’AA en chaîne polymère, la réaction de polymérisation s’effectuecontinûment avec un rapport molaire monomère sur amorceur constant durant tout le tempsde séjour dans le microcanal (jusqu’à 41 min). Une gamme large de masses molaires avec desindices de polymolécularité faibles a été obtenue : de 20 000 à 120 000 g.mol-1 pour 1,35 à1,70, en variant simplement les concentrations de monomère de la solution aqueuse initiale.Les paramètres expérimentaux influençant les propriétés du poly(acide acrylique) obtenu,ainsi que le lieu de la polymérisation ont été étudiés. / In this work, a continuous microfluidic device was developed to perform the synthesis ofpoly(acrylic acid) in supercritical CO2 (15 MPa and 75°C). This high pressure resistantdevice allows generating segmented flows in microcanal: an aqueous solution of monomerwas dispersed in a mixture of ethanol in CO2 containing initiator AIBN. The distribution ofdifferent components in this biphasic system has been determined by IR spectroscopyaccording to the pressure and the temperature. The thermal decomposition of AIBN indifferent reaction media has been investigated using UV-Vis spectroscopy. During thereaction, the droplets were used as reservoirs which insure the transfer of monomer to thecontinuous phase. Because of this rapid transfer compared to the reaction conversion, thepolymerization reaction was carried out continuously with a constant molar ratio betweenmonomer and initiator throughout the residence time (up to 41 min). It has been showed thata large range of molecular weights of poly(acrylic acid) (20 000 and 120 000 g.mol-1) withlow polydispersity index (1.35 à 1.70) can be obtained by just changing the initial monomerconcentration in the droplets. The effect of other parameters influencing the properties ofpoly(acrylic acid) as well as the locus of polymerization have been discussed.
2

Design, synthesis, and optimization of recoverable and recyclable silica-immobilized atom transfer radical polymerization catalysts

Nguyen, Joseph Vu 08 March 2005 (has links)
Despite the growing interest in heterogeneous polymerization catalysis, the majority of the polymerization catalysts used industrially are single-use entities that are left in the polymer product. Recoverable and recyclable polymerization catalysts have not reached the industrial utility of single-use catalysts because the catalyst and product separation have not become economical. The successful development of recyclable transition metal polymerization catalysts must take a rational design approach, hence academic and industrial researchers need to further expand the fundamental science and engineering of recyclable polymerization catalysis to gain an understanding of critical parameters that allow for the design of economically viable, recoverable solid polymerization catalysts. Unfortunately, the rapid development of Atom Transfer Radical Polymerization over the past 10 years has not resulted in its wide spread industrial practice. Numerous reports regarding the immobilization of transition metal ATRP catalysts, in attempts to increase its applicability, have extended the fundamentals of recyclable polymerization catalysis. However, for industrial viability, more research is required in the area of how the catalyst complex immobilization methodology and support structure affect the catalyst polymerization performance, regeneration, and recyclability. A comprehensive rational catalyst design approach of silica-immobilized ATRP catalyst was undertaken to answer these questions and are discussed here.

Page generated in 0.1522 seconds