• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of the interaction between AMP-activated protein kinase subunits

Cheung, Peter Ching For January 2000 (has links)
No description available.
2

Structure and function of AMPK: subunit interactions of the AMPK heterotrimeric complex

Iseli, Tristan J. Unknown Date (has links) (PDF)
AMP-activated protein kinase (AMPK) is an important metabolic stress-sensing protein kinase responsible for regulating metabolism in response to changing energy demand and nutrient supply. Mammalian AMPK is a stable aß? heterotrimer comprising a catalytic a subunit and two non-catalytic subunits, ß and ?. The ß subunit targets AMPK to membranes via an N-terminal myristoyl group and to glycogen via a mid-molecule glycogen-binding domain. Here I show that the conserved C-terminal 85-residue sequence of the ß subunit, ß1(186-270), is sufficient to form an active AMP-dependent heterotrimer a1ß1(186-270)?1, whereas the 25-residue ß1 C-terminal (246-270) sequence is sufficient to bind ?1, ?2, or ?3 but not the a subunit. Within this sequence (246-270), two residues were essential for ß? association based on Ala scanning mutagenesis. / Substitution of ß1 Tyr-267 for Ala precludes ß? but not aß association suggesting independent binding requirements. Substitution of Tyr-267 for Phe or His but not Ala or Ser can rescue ß? binding. Substitution of Thr-263 for Ala also resulted in decreased ß? but not aß association. Truncation of the a subunit reveals that ß1 binding requires the a1(313-473) sequence while the remainder of the a C-terminus is required for ? binding. The conserved C-terminal 85-residue sequence of the ß subunit (90% between ß1 and ß2) is the primary a? binding sequence responsible for the formation of the AMPK aß? heterotrimer. The ? subunits contain four repeat CBS sequences with variable N-terminal extensions and the ?1 isoform is N-terminally acetylated. The ?2 subunit can be multiply phosphorylated by protein kinase C (PKC) in vitro, with Ser-32 identified as a minor site. A detailed understanding of the structure and regulation of AMPK will enable rational drug design for treatment of such linked diseases as obesity, insulin resistance and type 2 diabetes.
3

Structure and function of AMPK: subunit interactions of the AMPK heterotrimeric complex

Iseli, Tristan J. Unknown Date (has links) (PDF)
AMP-activated protein kinase (AMPK) is an important metabolic stress-sensing protein kinase responsible for regulating metabolism in response to changing energy demand and nutrient supply. Mammalian AMPK is a stable aß? heterotrimer comprising a catalytic a subunit and two non-catalytic subunits, ß and ?. The ß subunit targets AMPK to membranes via an N-terminal myristoyl group and to glycogen via a mid-molecule glycogen-binding domain. Here I show that the conserved C-terminal 85-residue sequence of the ß subunit, ß1(186-270), is sufficient to form an active AMP-dependent heterotrimer a1ß1(186-270)?1, whereas the 25-residue ß1 C-terminal (246-270) sequence is sufficient to bind ?1, ?2, or ?3 but not the a subunit. Within this sequence (246-270), two residues were essential for ß? association based on Ala scanning mutagenesis. / Substitution of ß1 Tyr-267 for Ala precludes ß? but not aß association suggesting independent binding requirements. Substitution of Tyr-267 for Phe or His but not Ala or Ser can rescue ß? binding. Substitution of Thr-263 for Ala also resulted in decreased ß? but not aß association. Truncation of the a subunit reveals that ß1 binding requires the a1(313-473) sequence while the remainder of the a C-terminus is required for ? binding. The conserved C-terminal 85-residue sequence of the ß subunit (90% between ß1 and ß2) is the primary a? binding sequence responsible for the formation of the AMPK aß? heterotrimer. The ? subunits contain four repeat CBS sequences with variable N-terminal extensions and the ?1 isoform is N-terminally acetylated. The ?2 subunit can be multiply phosphorylated by protein kinase C (PKC) in vitro, with Ser-32 identified as a minor site. A detailed understanding of the structure and regulation of AMPK will enable rational drug design for treatment of such linked diseases as obesity, insulin resistance and type 2 diabetes.
4

The Effects of Aging on Skeletal Muscle AMPK Activation and an Analysis of Chronic AICAR Treatment on the Aging Phenotype

Hardman, Shalene E 01 March 2014 (has links) (PDF)
AMP-activated protein kinase (AMPK), a metabolic regulator, acts in opposition to many of the effects of aging and may provide insights into the development of sarcopenia. However, the effect of aging on AMPK activation is unclear. The purpose of this dissertation was to: 1) clarify the controversy concerning the activation of AMPK in response to endurance-like exercise in aged skeletal muscle; 2) address mechanisms for the age-associated alterations in AMPK activation; and 3) address the known benefits of chronic AICAR treatment in aged skeletal muscle. First, to clarify the effect of age on AMPK activation, young adult (YA) (8 mo.) and old (O) (30 mo.) male Fischer344 x Brown Norway F1 hybrid rats received an in situ bout of endurance-type contractions produced via electrical stimulation of the sciatic nerve (STIM). AMPK activation was attenuated in aging muscle as demonstrated by decreased AMPKα phosphorylation and AMPKα2 protein content and activity in O vs. YA muscle after STIM. In contrast, AMPKα1 content was greater in O vs. YA muscle, and α1 activity increased with STIM in O but not YA muscles. Second, the effect of age on the AMPK heterotrimer composition and nuclear localization was assessed as mechanisms for the altered AMPK activation. The AMPK heterotrimer composition was altered in aging skeletal muscle with lower AMPKγ2 and γ3 content and decreased association of AMPKγ3 with AMPKα1 and α2. Furthermore, activation of AMPK is known to increase translocation of AMPK to the nucleus in YA muscle; however, translocation of phosphorylated AMPK, AMPKα2, and AMPKγ3 were impaired in the aging rat muscle after STIM. Finally, chronic activation of AMPK with 5'-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) is known to increase mitochondrial content, activate autophagy, and repress protein synthesis; pathways that are altered with aging. The known benefits of chronic AICAR treatment were assessed in YA (5 mo.) and O (23 mo.) male C57Bl/6 mice. Mice were treadmill tested prior to and after one month of AICAR treatment. In vitro muscle contractions were performed following AICAR treatment. AICAR treatment improved the O mice treadmill endurance and the YA mice rate of fatigue and recovery. Additionally, AICAR increased citrate synthase activity, decreased SQSTM1/p62 protein content , and decreased Myf6 protein content in both the YA and O mice suggesting increased mitochondrial activity, autophagy, and decreased muscle regeneration. Therefore, chronic AICAR treatment may alter metabolic pathways to improve the exercise response in both YA and O mice.

Page generated in 0.0763 seconds