51 |
Preparação e caracterização de membranas poliméricas de poli(fluoreto de vinilideno) para uso em nanofiltraçãoThürmer, Mônica Beatriz 05 August 2010 (has links)
A busca por tecnologias cada vez mais eficazes no tratamento de águas e efluentes fez com que o desenvolvimento de membranas desempenhasse um papel importante nos processos de separação. A nanofiltração apresenta-se como uma tecnologia promissora para remoção de sais multivalentes em soluções aquosas. O preparo de membranas poliméricas pela técnica de inversão de fases permite a obtenção de estruturas distintas. Neste estudo avaliou-se o uso de diferentes não-solventes no preparo de membranas de poli(fluoreto de vinilideno) pelo método de inversão de fases, quanto às características estruturais e propriedades funcionais. Foram utilizados como não-solventes: água destilada, solução de dodecil sulfato de sódio e etanol/água, resultando nas membranas denominadas MT1, MT2 e MT3, respectivamente. O uso de um surfactante aniônico, como o dodecil sulfato de sódio, no preparo de membranas de poli(fluoreto de vinilideno) apresenta-se como uma inovação tecnológica. O uso de diferentes não-solventes alterou a taxa de precipitação do polímero, o que ocasionou alterações na estrutura química, morfológica, cristalina e nas propriedades de transporte das membranas. Análises de microscopia eletrônica de varredura e porosimetria de deslocamento líquido-líquido mostraram a obtenção de estruturas assimétricas, com poros na ordem de 1-2 nm para as membranas MT1 e MT2, e estrutura simétrica, com alta porosidade, para a membrana MT3. A análise de espectroscopia de infravermelho com transformada de Fourier mostrou a presença das fases cristalina α e β nas três membranas e no polímero. Análise termogravimétrica realizada em atmosfera inerte apresentou massa residual em torno de 20-30 % referente ao material carbonáceo, o qual foi eliminado com a utilização de atmosfera oxidante na análise. Os valores de cristalinidade aparente, do polímero e das membranas, apresentaram grandes variações quando determinados pela técnica de calorimetria exploratória diferencial, porém quando determinados a partir dos difratogramas obtidos pela técnica de difração de raios X, a variação foi pequena, apresentando valores em torno de 47%. A avaliação da composição química da superfície das membranas, por espectroscopia de fotoelétrons induzidos por raio X, mostrou que houve variação na quantidade de ligações C-F quando diferentes não-solventes foram utilizados. Essas variações contribuíram para alterações na hidrofobicidade das membranas. As membranas MT1 e MT2 apresentaram características hidrofílicas, com ângulo de contato em torno de 70°, e a membrana MT3 apresentou característica hidrofóbica, com ângulo de contato em torno de 142°. A maior hidrofobicidade da membrana MT3 é resultante da rugosidade superficial e da maior composição relativa de ligações C-F na superfície desta membrana. Ensaios de permeação realizados até a pressão de 20 bar mostraram que a membrana MT2 sofreu maior efeito de compactação e apresentou menor fluxo de permeado. Os ensaios realizados com soluções de cloreto de sódio, de cálcio e férrico mostraram diferentes eficiências de retenção. Para as membranas MT1 e MT2 a retenção de sais mono e divalentes foi praticamente igual, em torno de 5%. Para a solução de cloreto férrico, a retenção apresentou valores médios em torno de 16% e 27% para as membranas MT1 e MT2, respectivamente. Em função do tamanho de poros apresentados e da pressão transmembrana aplicada nos ensaios de permeação, as membranas MT1 e MT2 podem ser utilizadas em processos de nanofiltração. / The search for increasingly efficient technologies in water and effluent treatment made the development of membranes take on an important role in separation processes. The nanofiltration is presented as a promising technology for removal of multivalent salt in aqueous solution. The polymeric membranes preparation by phase inversion technique allows the obtaining of different structures. This study evaluated the use of different nonsolvents in the poly(vinylidene fluoride) membrane preparation, by phase inversion method, on the structural characteristics and functional properties. Were used as nonsolvents: distilled water, solution of sodium dodecyl sulfate and ethanol/water, resulting in the membranes called MT1, MT2 and MT3, respectively. Use of an anionic surfactant, like as sodium dodecyl sulfate, in the preparation of poly(vinylidene fluoride) membranes is presented as a technological innovation. The use of different non-solvents changed the rate of polymer precipitation which caused changes in chemical, morphology and crystalline structures, and transport properties of the membranes. Scanning electron microscopy and liquid-liquid displacement porosimetry analysis showed asymmetric structures, with pores on the order of 1-2 nm for the MT1 and MT2 membrane, and symmetrical structure, with a high porosity for MT3 membrane. The analysis by Fourier transform infrared spectroscopy showed the presence of α and β crystalline phases in the three membranes and in the polymer. Thermogravimetric analysis carried out in an inert atmosphere showed residual mass around 20-30% from the carbonaceous material, which was eliminated with the use of an oxidizing atmosphere in the analysis. The values of apparent crystallinity of the polymer and the membranes showed large variations, by differential scanning calorimetry technique, but when determined from the diffractograms obtained by X-ray diffraction technique, the variation was small, showed values around 47%. The evaluates of the membranes chemical surface composition by X-ray photoelectron spectroscopy showed that there was variation in the amount of C-F bonds, where different non-solvents were used. These variations contributed to changes in membranes hydrophobicity. The MT1 and MT2 membranes showed hydrophilic characteristics with contact angle around 70°, and the MT3 membrane showed hydrophobicity characteristics with contact angle around 142°. The highest hydrofobicity of the MT3 membrane is result of the surface roughness and the relative composition of CF bonds on this membrane surface. Permeation tests performed until a pressure of 20 bar, it was found that the MT2 membrane has a greater effect compression and showed a lower permeate flux. Tests conducted with solutions of sodium, calcium and ferric chloride showed different retention efficiencies. For MT1 and MT2 membranes the retention of mono and divalent salts was practically equal, around 5%. For the solution of ferric chloride, the retention showed medium values around 16% and 27% for the MT1 and MT2 membranes, respectively. Due to the pore size presented and transmembrane pressure applied on permeation tests, the MT1 and MT2 membranes may be used in nanofiltration processes.
|
52 |
Investigação de processos físico-químicos na adesão e desenvolvimento de biofilmes de Xylella fastidiosa / Investigation on physico-chemical processes during adhesion and biofilm development of Xylella fastidiosaLorite, Gabriela Simone, 1983- 18 August 2018 (has links)
Orientador: Mônica Alonso Cotta / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-18T17:58:13Z (GMT). No. of bitstreams: 1
Lorite_GabrielaSimone_D.pdf: 14464970 bytes, checksum: f2238701a88fbbba91e337eda7db2965 (MD5)
Previous issue date: 2011 / Resumo: Apresentamos nesta tese uma investigação dos processos físico-químicos da adesão e desenvolvimento de biofilmes da bactéria fitopatogênica Xylella fastidiosa (Xf) em diferentes superfícies. Este estudo visa corroborar ou complementar diferentes aspectos dos modelos atualmente em discussão para biofilmes bacterianos, além de, num caráter tecnológico, fornecer subsídios para um eventual controle da formação dos biofilmes de Xf. Para isso utilizamos uma abordagem diferenciada à comumente empregada em biologia - e mais próxima à ciência dos materiais - visando isolar e quantificar a relevância dos parâmetros que contribuem na formação de um biofilme em diferentes superfícies, tentando aproximá-las do xilema da planta. Nossos resultados mostram uma semelhança de desenvolvimento (forma, tamanho e quantidade) nos biofilmes de Xf cultivados em superfícies de vidro e Si, e um melhor desenvolvimento dos biofilmes em Si do que nas superfícies de etil celulose, EC, e acetato de celulose, AC. De um ponto de vista fenomenológico, os biofilmes apresentam diferentes estruturas, taxa de desenvolvimento e tendências na expressão gênica entre superfícies com e sem presença de celulose derivatizada. Na caracterização das superfícies utilizadas consideramos o efeito do meio de cultura em suas propriedades. Nas superfícies de vidro e Si, constatamos a formação de um filme condicionante devido à adsorção dos constituintes deste meio. O grau de hidrofobicidade das superfícies de vidro e Si diminui significativamente após contato com o meio de cultura enquanto as superfícies de celulose derivatizada apresentam pouca (EC) ou nenhuma alteração (AC); observamos também um aumento do potencial de superfície (PS) para Si e EC e, ainda, uma diminuição de PS em AC. Estas evidências sugerem uma correlação entre PS mais altos e grau de hidrofobicidade baixos com a presença de biofilmes de Xf em maior número e tamanho. Além disso, medidas de espectroscopia de força utilizando ponta funcionalizada com a proteína de adesão XadA1 evidenciam também um comportamento distinto na superfície de AC. Estes resultados apontam para a importância da interação eletrostática no processo inicial de adesão da bactérias às superfícies estudadas. Por fim, a presença de material extracelular ao redor dos biofilmes e células de Xf em superfícies de vidro e Si foi observada indicando a presença de uma matriz exopolimérica protetora. Espectroscopia de infravermelho mostra a presença de polissacarídeos ¿ constituinte da matriz polimérica ¿ desde o estágio inicial de formação do biofilme, indicando uma possível contribuição dessa matriz para o processo de adesão que precede o desenvolvimento do biofilme / Abstract: In this work, we report an investigation on relevant physicochemical processes of bacterial surface adhesion and biofilm development for the phytopathogen Xylella fastidiosa (Xf) on different surfaces. This study aims to corroborate or supplement different aspects of the bacterial biofilms models currently under discussion and, in a technological point of view, provides experimental input for an eventual control of Xf biofilm formation. For this purpose, we have used an approach not commonly found in biology ¿ and more similar to materials science ¿ in order to isolate and quantify the relevance of the parameters that contribute to the formation of a biofilm on different surfaces, as well as trying to make these surfaces closer to the plant xylem. Our results show a similar development (shape, size and quantity) for Xf biofilms grown on Si and glass surfaces, and an improved development of biofilms grown on Si than on ethyl cellulose, EC, and cellulose acetate, AC. Under a phenomenological point of view, biofilms present different structures, rate of development and trends in gene expression between surfaces with and without the presence of derivatized cellulose. In order to characterize the surfaces, we considered the effect of culture medium on their properties. In Si and glass surfaces, we observe the formation of a conditioning film due to adsorption of the constituents of the culture medium. The degree of hydrophobicity of glass and Si surfaces decreases significantly after contact with this medium. On the other hand, cellulose derivatized surfaces present lower (EC) or no (AC) modifications of this property. In addition, we observed an increase in the surface potential (SP) for Si and EC and also a SP decrease for AC. These evidences suggest a correlation between higher SP values and lower degree of hydrophobicity with the presence of biofilms of Xf in larger numbers and size. Furthermore, force spectroscopy measurements using a functionalized tip with the adhesion protein XadA1 also show a different behavior on the AC surface. These results reveal the importance of electrostatic interaction in the initial bacterial adhesion for the surfaces studied here. Finally, the presence of extracellular material around the Xf cells and biofilms on glass and Si surfaces was observed indicating the presence of a protective exopolymeric matrix. Infrared spectroscopy shows the presence of polysaccharides - a constituent of the polymeric matrix - from the very initial stages of biofilm formation, indicating a possible contribution of this matrix for the adhesion process which precedes biofilm development / Doutorado / Biofísica / Doutora em Ciências
|
Page generated in 0.0674 seconds