• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inhaled Aerosols Targeted via Magnetic Alignment of High Aspect Ratio Particles: An In Vivo and Optimization Study

Redman, Gillian 06 1900 (has links)
An in vivo study with 19 rabbits was completed. Half of the exposed rabbits had a magnetic field placed externally over their right lung. Magnetic resonance images of the lungs were acquired to determine the iron concentrations in the right and left lung of each animal. The right/left ratio increased in the middle and basal regions of the lung. With further optimization, this technique could be an effective method for targeted drug delivery. Additionally, the feasibility of increasing the length of high aspect ratio particles for improved targeted drug delivery was explored. An ultrasonic nozzle was pulsed into a large evaporation chamber. Individual particles were found to be double the original length. However, due to locally increased humidity the droplets were not dried, except with the use of an orifice to rapidly accelerate and break apart the larger droplets. The complications associated with this method make it an undesirable and unfeasible method of creating longer particles.
2

Inhaled Aerosols Targeted via Magnetic Alignment of High Aspect Ratio Particles: An In Vivo and Optimization Study

Redman, Gillian Unknown Date
No description available.
3

Optimization of Polymer-based Nanocomposites for High Energy Density Applications

Barhoumi Ep Meddeb, Amira 2012 May 1900 (has links)
Monolithic materials are not meeting the increasing demand for flexible, lightweight and compact high energy density dielectrics. This limitation in performance is due to the trade-off between dielectric constant and dielectric breakdown. Insulating polymers are of interest owing to their high inherent electrical resistance, low dielectric loss, flexibility, light weight, and low cost; however, capacitors produced with dielectric polymers are limited to an energy density of ~1-2 J/cc. Polymer nanocomposites, i.e., high dielectric particles embedded into a high dielectric breakdown polymer, are promising candidates to overcome the limitations of monolithic materials for energy storage applications. The main objective of this dissertation is to simultaneously increase the dielectric permittivity and dielectric breakdown without increasing the loss, resulting in a significant enhancement in the energy density over the unmodified polymer. The key is maintaining a low volume content to ensure a high inter-particle distance, effectively minimizing the effect of local field on the composite's dielectric breakdown. The first step is studying the particle size and aspect ratio effects on the dielectric properties to ensure a judicious choice in order to obtain the highest enhancement. The best results, as a combination of dielectric constant, loss and dielectric breakdown, were with the particles with the highest aspect ratio. Further improvement in the dielectric behavior is observed when the nanoparticles surface is chemically tailored to tune transport properties. The particles treatment leads to better dispersion, planar distribution and stronger interaction with the polymer matrix. The planar distribution of the high aspect ratio particles is essential to limit the enhancement of local fields, where minimum local fields result in higher dielectric breakdown in the composite. The most significant improvement in the dielectric properties is achieved with chemically-treated nano TiO2 with an aspect ratio of 14 at a low 4.6 vol% loading, where the energy density increased by 500% compared to pure PVDF. At this loading, simultaneous enhancement in the dielectric constant and dielectric breakdown occurs while the dielectric loss remains in the same range as that of the pristine polymer.

Page generated in 0.1055 seconds