• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 24
  • 17
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 255
  • 255
  • 132
  • 76
  • 50
  • 48
  • 40
  • 38
  • 35
  • 35
  • 31
  • 28
  • 28
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Consistent bi-level variable selection via composite group bridge penalized regression

Seetharaman, Indu January 1900 (has links)
Master of Science / Department of Statistics / Kun Chen / We study the composite group bridge penalized regression methods for conducting bilevel variable selection in high dimensional linear regression models with a diverging number of predictors. The proposed method combines the ideas of bridge regression (Huang et al., 2008a) and group bridge regression (Huang et al., 2009), to achieve variable selection consistency in both individual and group levels simultaneously, i.e., the important groups and the important individual variables within each group can both be correctly identi ed with probability approaching to one as the sample size increases to in nity. The method takes full advantage of the prior grouping information, and the established bi-level oracle properties ensure that the method is immune to possible group misidenti cation. A related adaptive group bridge estimator, which uses adaptive penalization for improving bi-level selection, is also investigated. Simulation studies show that the proposed methods have superior performance in comparison to many existing methods.
42

Improving the performance of the prediction analysis of microarrays algorithm via different thresholding methods and heteroscedastic modeling

Sahtout, Mohammad Omar January 1900 (has links)
Doctor of Philosophy / Department of Statistics / Haiyan Wang / This dissertation considers different methods to improve the performance of the Prediction Analysis of Microarrays (PAM). PAM is a popular algorithm for high-dimensional classification. However, it has a drawback of retaining too many features even after multiple runs of the algorithm to perform further feature selection. The average number of selected features is 2611 from the application of PAM to 10 multi-class microarray human cancer datasets. Such a large number of features make it difficult to perform follow up study. This drawback is the result of the soft thresholding method used in the PAM algorithm and the thresholding parameter estimate of PAM. In this dissertation, we extend the PAM algorithm with two other thresholding methods (hard and order thresholding) and a deep search algorithm to achieve better thresholding parameter estimate. In addition to the new proposed algorithms, we derived an approximation for the probability of misclassification for the hard thresholded algorithm under the binary case. Beyond the aforementioned work, this dissertation considers the heteroscedastic case in which the variances for each feature are different for different classes. In the PAM algorithm the variance of the values for each predictor was assumed to be constant across different classes. We found that this homogeneity assumption is invalid for many features in most data sets, which motivates us to develop the new heteroscedastic version algorithms. The different thresholding methods were considered in these algorithms. All new algorithms proposed in this dissertation are extensively tested and compared based on real data or Monte Carlo simulation studies. The new proposed algorithms, in general, not only achieved better cancer status prediction accuracy, but also resulted in more parsimonious models with significantly smaller number of genes.
43

Bayesian classification of DNA barcodes

Anderson, Michael P. January 1900 (has links)
Doctor of Philosophy / Department of Statistics / Suzanne Dubnicka / DNA barcodes are short strands of nucleotide bases taken from the cytochrome c oxidase subunit 1 (COI) of the mitochondrial DNA (mtDNA). A single barcode may have the form C C G G C A T A G T A G G C A C T G . . . and typically ranges in length from 255 to around 700 nucleotide bases. Unlike nuclear DNA (nDNA), mtDNA remains largely unchanged as it is passed from mother to offspring. It has been proposed that these barcodes may be used as a method of differentiating between biological species (Hebert, Ratnasingham, and deWaard 2003). While this proposal is sharply debated among some taxonomists (Will and Rubinoff 2004), it has gained momentum and attention from biologists. One issue at the heart of the controversy is the use of genetic distance measures as a tool for species differentiation. Current methods of species classification utilize these distance measures that are heavily dependent on both evolutionary model assumptions as well as a clearly defined "gap" between intra- and interspecies variation (Meyer and Paulay 2005). We point out the limitations of such distance measures and propose a character-based method of species classification which utilizes an application of Bayes' rule to overcome these deficiencies. The proposed method is shown to provide accurate species-level classification. The proposed methods also provide answers to important questions not addressable with current methods.
44

Bayesian Inference in Large-scale Problems

Johndrow, James Edward January 2016 (has links)
<p>Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here. </p><p>Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.</p><p>One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.</p><p>Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.</p><p>In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models. </p><p>Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data. </p><p>The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.</p><p>Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.</p> / Dissertation
45

Systematising glyph design for visualization

Maguire, Eamonn James January 2014 (has links)
The digitalisation of information now affects most fields of human activity. From the social sciences to biology to physics, the volume, velocity, and variety of data exhibit exponential growth trends. With such rates of expansion, efforts to understand and make sense of datasets of such scale, how- ever driven and directed, progress only at an incremental pace. The challenges are significant. For instance, the ability to display an ever growing amount of data is physically and naturally bound by the dimensions of the average sized display. A synergistic interplay between statistical analysis and visualisation approaches outlines a path for significant advances in the field of data exploration. We can turn to statistics to provide principled guidance for prioritisation of information to display. Using statistical results, and combining knowledge from the cognitive sciences, visual techniques can be used to highlight salient data attributes. The purpose of this thesis is to explore the link between computer science, statistics, visualization, and the cognitive sciences, to define and develop more systematic approaches towards the design of glyphs. Glyphs represent the variables of multivariate data records by mapping those variables to one or more visual channels (e.g., colour, shape, and texture). They offer a unique, compact solution to the presentation of a large amount of multivariate information. However, composing a meaningful, interpretable, and learnable glyph can pose a number of problems. The first of these problems exist in the subjectivity involved in the process of data to visual channel mapping, and in the organisation of those visual channels to form the overall glyph. Our first contribution outlines a computational technique to help systematise many of these otherwise subjective elements of the glyph design process. For visual information compression, common patterns (motifs) in time series or graph data for example, may be replaced with more compact, visual representations. Glyph-based techniques can provide such representations that can help users find common patterns more quickly, and at the same time, bring attention to anomalous areas of the data. However, replacing any data with a glyph is not going to make tasks such as visual search easier. A key problem is the selection of semantically meaningful motifs with the potential to compress large amounts of information. A second contribution of this thesis is a computational process for systematic design of such glyph libraries and their subsequent glyphs. A further problem in the glyph design process is in their evaluation. Evaluation is typically a time-consuming, highly subjective process. Moreover, domain experts are not always plentiful, therefore obtaining statistically significant evaluation results is often difficult. A final contribution of this work is to investigate if there are areas of evaluation that can be performed computationally.
46

Improved Methods for Cluster Identification and Visualization

Manukyan, Narine 18 July 2011 (has links)
Self-organizing maps (SOMs) are self-organized projections of high dimensional data onto a low, typically two dimensional (2D), map wherein vector similarity is implicitly translated into topological closeness in the 2D projection. They are thus used for clustering and visualization of high dimensional data. However it is often challenging to interpret the results due to drawbacks of currently used methods for identifying and visualizing cluster boundaries in the resulting feature maps. In this thesis we introduce a new phase to the SOM that we refer to as the Cluster Reinforcement (CR) phase. The CR phase amplifies within-cluster similarity with the consequence that cluster boundaries become much more evident. We also define a new Boundary (B) matrix that makes cluster boundaries easy to visualize, can be thresholded at various levels to make cluster hierarchies apparent, and can be overlain directly onto maps of component planes (something that was not possible with previous methods). The combination of the SOM, CR phase and B-matrix comprise an automated method for improved identification and informative visualization of clusters in high dimensional data. We demonstrate these methods on three data sets: the classic 13- dimensional binary-valued “animal” benchmark test, actual 60-dimensional binaryvalued phonetic word clustering problem, and 3-dimensional real-valued geographic data clustering related to fuel efficiency of vehicle choice.
47

A-OPTIMAL SUBSAMPLING FOR BIG DATA GENERAL ESTIMATING EQUATIONS

Chung Ching Cheung (7027808) 13 August 2019 (has links)
<p>A significant hurdle for analyzing big data is the lack of effective technology and statistical inference methods. A popular approach for analyzing data with large sample is subsampling. Many subsampling probabilities have been introduced in literature (Ma, \emph{et al.}, 2015) for linear model. In this dissertation, we focus on generalized estimating equations (GEE) with big data and derive the asymptotic normality for the estimator without resampling and estimator with resampling. We also give the asymptotic representation of the bias of estimator without resampling and estimator with resampling. we show that bias becomes significant when the data is of high-dimensional. We also present a novel subsampling method called A-optimal which is derived by minimizing the trace of some dispersion matrices (Peng and Tan, 2018). We derive the asymptotic normality of the estimator based on A-optimal subsampling methods. We conduct extensive simulations on large sample data with high dimension to evaluate the performance of our proposed methods using MSE as a criterion. High dimensional data are further investigated and we show through simulations that minimizing the asymptotic variance does not imply minimizing the MSE as bias not negligible. We apply our proposed subsampling method to analyze a real data set, gas sensor data which has more than four millions data points. In both simulations and real data analysis, our A-optimal method outperform the traditional uniform subsampling method.</p>
48

Statistical methods for the testing and estimation of linear dependence structures on paired high-dimensional data : application to genomic data

Mestres, Adrià Caballé January 2018 (has links)
This thesis provides novel methodology for statistical analysis of paired high-dimensional genomic data, with the aimto identify gene interactions specific to each group of samples as well as the gene connections that change between the two classes of observations. An example of such groups can be patients under two medical conditions, in which the estimation of gene interaction networks is relevant to biologists as part of discerning gene regulatory mechanisms that control a disease process like, for instance, cancer. We construct these interaction networks fromdata by considering the non-zero structure of correlationmatrices, which measure linear dependence between random variables, and their inversematrices, which are commonly known as precision matrices and determine linear conditional dependence instead. In this regard, we study three statistical problems related to the testing, single estimation and joint estimation of (conditional) dependence structures. Firstly, we develop hypothesis testingmethods to assess the equality of two correlation matrices, and also two correlation sub-matrices, corresponding to two classes of samples, and hence the equality of the underlying gene interaction networks. We consider statistics based on the average of squares, maximum and sum of exceedances of sample correlations, which are suitable for both independent and paired observations. We derive the limiting distributions for the test statistics where possible and, for practical needs, we present a permuted samples based approach to find their corresponding non-parametric distributions. Cases where such hypothesis testing presents enough evidence against the null hypothesis of equality of two correlation matrices give rise to the problem of estimating two correlation (or precision) matrices. However, before that we address the statistical problem of estimating conditional dependence between random variables in a single class of samples when data are high-dimensional, which is the second topic of the thesis. We study the graphical lasso method which employs an L1 penalized likelihood expression to estimate the precision matrix and its underlying non-zero graph structure. The lasso penalization termis given by the L1 normof the precisionmatrix elements scaled by a regularization parameter, which determines the trade-off between sparsity of the graph and fit to the data, and its selection is our main focus of investigation. We propose several procedures to select the regularization parameter in the graphical lasso optimization problem that rely on network characteristics such as clustering or connectivity of the graph. Thirdly, we address the more general problem of estimating two precision matrices that are expected to be similar, when datasets are dependent, focusing on the particular case of paired observations. We propose a new method to estimate these precision matrices simultaneously, a weighted fused graphical lasso estimator. The analogous joint estimation method concerning two regression coefficient matrices, which we call weighted fused regression lasso, is also developed in this thesis under the same paired and high-dimensional setting. The two joint estimators maximize penalized marginal log likelihood functions, which encourage both sparsity and similarity in the estimated matrices, and that are solved using an alternating direction method of multipliers (ADMM) algorithm. Sparsity and similarity of thematrices are determined by two tuning parameters and we propose to choose them by controlling the corresponding average error rates related to the expected number of false positive edges in the estimated conditional dependence networks. These testing and estimation methods are implemented within the R package ldstatsHD, and are applied to a comprehensive range of simulated data sets as well as to high-dimensional real case studies of genomic data. We employ testing approaches with the purpose of discovering pathway lists of genes that present significantly different correlation matrices on healthy and unhealthy (e.g., tumor) samples. Besides, we use hypothesis testing problems on correlation sub-matrices to reduce the number of genes for estimation. The proposed joint estimation methods are then considered to find gene interactions that are common between medical conditions as well as interactions that vary in the presence of unhealthy tissues.
49

A General Framework for Multi-Resolution Visualization

Yang, Jing 05 May 2005 (has links)
Multi-resolution visualization (MRV) systems are widely used for handling large amounts of information. These systems look different but they share many common features. The visualization research community lacks a general framework that summarizes the common features among the wide variety of MRV systems in order to help in MRV system design, analysis, and enhancement. This dissertation proposes such a general framework. This framework is based on the definition that a MRV system is a visualization system that visually represents perceptions in different levels of detail and allows users to interactively navigate among the representations. The visual representations of a perception are called a view. The framework is composed of two essential components: view simulation and interactive visualization. View simulation means that an MRV system simulates views of non-existing perceptions through simplification on the data structure or the graphics generation process. This is needed when the perceptions provided to the MRV system are not at the user's desired level of detail. The framework identifies classes of view simulation approaches and describes them in terms of simplification operators and operands (spaces). The simplification operators are further divided into four categories, namely sampling operators, aggregation operators, approximation operators, and generalization operators. Techniques in these categories are listed and illustrated via examples. The simplification operands (spaces) are also further divided into categories, namely data space and visualization space. How different simplification operators are applied to these spaces is also illustrated using examples. Interactive visualization means that an MRV system visually presents the views to users and allows users to interactively navigate among different views or within one view. Three types of MRV interface, namely the zoomable interface, the overview + context interface, and the focus + detail interface, are presented with examples. Common interaction tools used in MRV systems, such as zooming and panning, selection, distortion, overlap reduction, previewing, and dynamic simplification are also presented. A large amount of existing MRV systems are used as examples in this dissertation, including several MRV systems developed by the author based on the general framework. In addition, a case study that analyzes and suggests possible improvements for an existing MRV system is described. These examples and the case study reveal that the framework covers the common features of a wide variety of existing MRV systems, and helps users analyze and improve existing MRV systems as well as design new MRV systems.
50

Visual Hierarchical Dimension Reduction

Yang, Jing 09 January 2002 (has links)
Traditional visualization techniques for multidimensional data sets, such as parallel coordinates, star glyphs, and scatterplot matrices, do not scale well to high dimensional data sets. A common approach to solve this problem is dimensionality reduction. Existing dimensionality reduction techniques, such as Principal Component Analysis, Multidimensional Scaling, and Self Organizing Maps, have serious drawbacks in that the generated low dimensional subspace has no intuitive meaning to users. In addition, little user interaction is allowed in those highly automatic processes. In this thesis, we propose a new methodology to dimensionality reduction that combines automation and user interaction for the generation of meaningful subspaces, called the visual hierarchical dimension reduction (VHDR) framework. Firstly, VHDR groups all dimensions of a data set into a dimension hierarchy. This hierarchy is then visualized using a radial space-filling hierarchy visualization tool called Sunburst. Thus users are allowed to interactively explore and modify the dimension hierarchy, and select clusters at different levels of detail for the data display. VHDR then assigns a representative dimension to each dimension cluster selected by the users. Finally, VHDR maps the high-dimensional data set into the subspace composed of these representative dimensions and displays the projected subspace. To accomplish the latter, we have designed several extensions to existing popular multidimensional display techniques, such as parallel coordinates, star glyphs, and scatterplot matrices. These displays have been enhanced to express semantics of the selected subspace, such as the context of the dimensions and dissimilarity among the individual dimensions in a cluster. We have implemented all these features and incorporated them into the XmdvTool software package, which will be released as XmdvTool Version 6.0. Lastly, we developed two case studies to show how we apply VHDR to visualize and interactively explore a high dimensional data set.

Page generated in 0.1174 seconds