• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 13
  • 10
  • 10
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Proton acceleration experiment by high intensity laser pulse interaction with solid density target at the Texas Petawatt Laser Facility

Kuk, Donghoon 20 February 2012 (has links)
In recent, high intensity laser pulse interaction with solid density matter has been studied in several laboratory and facilities. Multi-MeV proton and ion beams from plasma produced by this interaction is one important application research area of HEDP. In this thesis, the basic theory of hot electron generation associated with proton acceleration will be introduced. A basic proton acceleration mechanism called TNSA will be introduced with supplemental free plasma expansion model. To investigate proton acceleration at the Texas Petawatt Facility, the experimental set up and target alignmen will be introduced in the chapter 5. While the analysis of data acquired from this experiment is still unfinished, a brief result with RCF image will be introduced in chapter 6. / text
2

Electrode and Electrolyte Design for High Energy Density Batteries:

Luo, Jingru January 2020 (has links)
Thesis advisor: Udayan Mohanty / Thesis advisor: Dunwei Wang / With the fast development of society, the demand for batteries has been increasing dramatically over the years. To satisfy the ever-increasing demand for high energy density, different chemistries were explored. From the first-generation lead–acid batteries to the state-of-the-art LIBs (lithium ion batteries), the energy density has been improved from 40 to over 200 Wh kg⁻¹. However, the development of LIBs has approached the upper limit. Electrode materials based on insertion chemistry generally deliver a low capacity of no more than 400 mAh/g. To break the bottleneck of current battery technologies, new chemistries are needed. Moving from the intercalation chemistry to conversion chemistry is a trend. The conversion electrode materials feature much higher capacity than the conventional intercalation-type materials, especially for the O₂ cathode and Li metal anode. The combination of these two can bring about a ten-folds of energy density increase to the current LIBs. Moreover, to satisfy the safety requirements, either using non-flammable electrolytes to reduce the safety risk of Li metal anode or switch to dendrite-free Mg anode is a good strategy toward high energy density batteries. First, to enable the conversion-type O₂ cathode, a wood-derived, free-standing porous carbon electrode was demonstrated and successfully be applied as a cathode in Li-O₂ batteries. The spontaneously formed hierarchical porous structure exhibits good performance in facilitating the mass transport and hosting the discharge products of Li₂O₂. Heteroatom (N) doping further improves the catalytic activity of the carbon cathode with lower overpotential and higher capacity. Next, to solve the irreversible Li plating/stripping and safety issues related with Li metal anode, we introduced O₂ as additives to enable Li metal anode operation in non-flammable triethyl phosphate (TEP) electrolyte. The electrochemically induced chemical reaction between O₂- derived species and TEP solvent molecules facilitated the beneficial SEI components formation and effectively suppressed the TEP decomposition. The promise of safe TEP electrolyte was also demonstrated in Li-O₂ battery and Li-LFP battery. If we think beyond Li chemistries, Mg anode with dendrite-free property can be a promising candidate to further reduce the safety concerns while remaining the high energy density advantage. Toward the end of this thesis, we developed a thin film metal–organic framework (MOF) for selective Mg²⁺ transport to solve the incompatibility issues between the anode and the cathode chemistry for Mg batteries. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
3

Characterizing High-Energy-Density Propellants for Space Propulsion Applications

Kokan, Timothy Salim 05 April 2007 (has links)
There exists wide ranging research interest in high-energy-density matter (HEDM) propellants as a potential replacement for existing industry standard fuels for liquid rocket engines. The U.S. Air Force Research Laboratory, the U.S. Army Research Lab, the NASA Marshall Space Flight Center, and the NASA Glenn Research Center each either recently concluded or currently has ongoing programs in the synthesis and development of these potential new propellants. In order to perform conceptual designs using these new propellants, most conceptual rocket engine powerhead design tools (e.g. NPSS, ROCETS, and REDTOP-2) require several thermophysical properties of a given propellant over a wide range of temperature and pressure. These properties include enthalpy, entropy, density, viscosity, and thermal conductivity. Very little thermophysical property data exists for most of these potential new HEDM propellants. Experimental testing of these properties is both expensive and time consuming and is impractical in a conceptual vehicle design environment. A new technique for determining these thermophysical properties of potential new rocket engine propellants is presented. The technique uses a combination of three different computational methods to determine these properties. Quantum mechanics and molecular dynamics are used to model new propellants at a molecular level in order to calculate density, enthalpy, and entropy. Additivity methods are used to calculate the kinematic viscosity and thermal conductivity of new propellants. This new technique is validated via a series of verification experiments of HEDM compounds. Results are provided for two HEDM propellants: quadricyclane and 2-azido-N, N-dimethylethanamine (DMAZ). In each case, the new technique does a better job than the best current computational methods at accurately matching the experimental data of the HEDM compounds of interest. A case study is provided to help quantify the vehicle level impacts of using HEDM propellants. The case study consists of the National Aeronautics and Space Administrations (NASA) Exploration Systems Architecture Study (ESAS) Lunar Surface Access Module (LSAM). The results of this study show that the use of HEDM propellants instead of hypergolic propellants can lower the gross weight of the LSAM and may be an attractive alternative to the current baseline hypergolic propellant choice.
4

Simulation of Uniform Heating of Wires Attached to Reduced Mass Targets

Kelly, Danielle K. January 2014 (has links)
No description available.
5

The Effect of Anomalous Resistivity on the Electrothermal Instability

Masti, Robert Leo 09 June 2021 (has links)
The current driven electrothermal instability (ETI) forms when the material resistivity is temperature dependent, occurring in nearly all Z-pinch-like high energy density platforms. ETI growth for high-mass density materials is predominantly striation form which corresponds to magnetically perpendicular mode growth. The striation form is caused by a resistivity that increases with temperature, which is often the case for high-mass density materials. In contrast, low-density ETI growth is mainly filamentation form, magnetically aligned modes, because the resistivity tends to decrease with temperature. Simulating ETI is challenging due to the coupling of magnetic field transport to equation of state over a large region of state space spanning solids to plasmas. This dissertation presents a code-code verification study to effectively model the ETI. Specifically, this study provides verification cases which ensure the unit physics components essential to modeling ETI are accurate. This provides a way for fluid-based codes to simulate linear and nonlinear ETI. Additionally, the study provides a sensitivity analysis of nonlinear ETI to equation of state, vacuum resistivity, and vacuum density. Simulations of ETI typically use a collisional form of the resistivity as provided, e.g., in a Lee-More Desjarlais conductivity table. In regions of low-mass density, collision-less transport needs to be incorporated to properly simulate the filamentation form of ETI growth. Anomalous resistivity (AR) is an avenue by which these collision-less micro-turbulent effects can be incorporated into a collisional resistivity. AR directly changes the resistivity which will directly modify the linear growth rate of ETI, so a new linear growth rate is derived which includes AR's added dependency on current density. This linear growth rate is verified through a filamentation ETI simulation using an ion acoustic based AR model. Kinetically based simulations of vacuum contaminant plasmas provide a physical platform to study the use of AR models in pulsed-power platforms. Using parameters from the Z-machine pulsed-power device, the incorporation of AR can increase a collisional-based resistivity by upwards of four orders of magnitude. The presence of current-carrying vacuum contaminant plasmas can indirectly affect nonlinear ETI growth through modification of the magnetic diffusion wave. The impact of AR on nonlinear ETI is explored through pulsed-power simulations of a dielectrically coated solid metallic liner surrounded by a low-density vacuum contaminant plasma. / Doctor of Philosophy / High-energy-density physics (HEDP) is the study of materials with pressures that exceed 1Mbar, and is difficult to reach here on Earth. Inertial confinement fusion concepts and experiments are the primary source for achieving these pressures in the laboratory. Inertial confinement fusion (ICF) is a nuclear fusion concept that relies on the inertia of imploding materials to compress a light fuel (often deuterium and tritium) to high densities and temperatures to achieve fusion reactions. The imploding materials in ICF are driven in many ways, but this dissertation focuses on ICF implosions driven by pulsed-power devices. Pulsed-power involves delivering large amounts of capacitive energy in the form of electrical current over very short time scales (nanosecond timescale). The largest pulsed-power driver is the Z-machine at Sandia National Laboratory (SNL) which is capable of delivering upwards of 30 MA in 130 ns approximately. During an ICF implosion there exists instabilities that disrupt the integrity of the implosion causing non-ideal lower density and temperature yields. One such instability is the Rayleigh-Taylor instability where a light fluid supports a heavy fluid under the influence of gravity. The Rayleigh-Taylor is one of the most detrimental instabilities toward achieving ignition and was one of the main research topics in the early stages of this Ph.D. The study of this instability provided a nice intro for modeling in the HEDP regime, specifically, in the uses of tabulated equations-of-state and tabulated transport coefficients (e.g., resistivity and thermal conductivity). The magneto Rayleigh-Taylor instability occurs in pulsed-power fusion platforms where the heavy fluid is now supported by a magnetic field instead of a light fluid. The magneto Rayleigh-Taylor instability is the most destructive instability in many pulsed-power fusion platforms, so understanding seeding mechanisms is critical in mitigating its impact. Magnetized liner inertial fusion (MagLIF) is a pulsed-power fusion concept that involves imploding a solid cylindrical metal annulus on laser-induced pre-magnetized fuel. The solid metal liners have imperfections and defects littered throughout the surface. The imperfections on the surface create a perturbation during the initial phases of the implosion when the solid metal liner is undergoing ohmic heating. Because a solid metal has a resistivity that increases with temperature, as the metal heats the resistivity increases causing more heating which creates a positive feedback loop. This positive feedback loop is similar to the heating process in a nichrome wire in a toaster, and is the fundamental bases of the main instability studied in this dissertation, the electrothermal instability (ETI). ETI is present in all pulsed-power fusion platforms where a current-carrying material has a resistivity that changes with temperature. In MagLIF, ETI is dominant in the early stages of a current pulse where the resistivity of the metal increases with temperature. An increasing resistivity with temperature is connected to the axially growing modes of ETI which is denoted as the striation form of ETI. Contrary to the striation form of ETI, the filamentation form of ETI occurs when resistivity decreases with temperature and is associated with the azimuthally growing modes of ETI. Chapter 2 in this dissertation details a study of how to simulate striaiton ETI for a MagLIF-like configuration across different resistive magnetohydrodynamics (MHD) codes. Resistivity that decreases with temperature typically occurs in low-density materials which are often in a gaseous or plasma state. Low density plasmas are nearly collision-less and have resistivity definitions that often overestimate the conductivity of a plasma in certain experiments. Anomalous resistivity (AR) addresses this overestimation by increasing a collisional resistivity through micro-turbulence driven plasma phenomenon that mimic collisional behavior. The creation of AR involves reduced-modeling of micro-turbulence driven plasma phenomenon, such as the lower hybrid drift instability, to construct an effective collision frequency based on drift speeds. Because AR directly modifies a collisional resistivity for certain conditions, it will directly alter the growth of ETI which is the topic of Chapter 3. The current on the Z-machine is driven by the capacitor bank through the post-hole convolute, the magnetically insulated transmission lines, and then into the chamber. Magnetically insulated transmission lines have been shown to create low-density plasma through desorption processes in the vacuum leading to a load surrounded by a low-density plasma referred to as a vacuum contaminant plasmas (VCP). VCP can divert current from the load by causing a short between the vacuum anode and cathode gap. In simulations, this plasma would be highly conducting when represented by a collisionally-based resistivity model resulting in non-physical vacuum heating that is not observed in experiments. VCP are current-carrying low-density and high-temperature plasmas which make them ideal candidates to study the role of AR as described in Chapter 4. Chapter 4 investigates the role AR in a VCP would have on striation ETI for a MagLIF-like load.
6

Pulsed magnetic field generation for experiments in high energy density plasmas

Wisher, Matthew Louis 18 September 2014 (has links)
Experiments in high energy density (HED) plasma physics have become more accessible with the increasing availability of high-intensity pulsed lasers. Extending the experiment parameters to include magnetized HED plasmas requires a field source that can generate fields of order 100 tesla. This dissertation discusses the design and implementation of a pulsed field driver with a designed maximum of 2.2 MA from a 160 kJ capacitor bank. Faraday rotation measurement of 63 T for a 1.0 MA discharge supported Biot-Savart estimates for a single-turn coil with a 1 cm bore. After modification, the field driver generated up to 15 T to magnetize supernova-like spherical blast waves driven by the Texas Petawatt Laser. The presence of the high field suppressed blast wave expansion, and had the additional effect of revealing a cylindrical plasma along the laser axis. / text
7

Ferroelectric nanocomposite and polar hybrid sol-gel materials for efficient, high energy density capacitors

Kim, Yun Sang 22 May 2014 (has links)
The development of efficient, high-performance materials for electrical energy storage and conversion applications has become a must to meet an ever-increasing need for electrical energy. Among devices developed for this purpose, capacitors have been used for pulsed power applications that require large power density with millisecond-scale charge and discharge. However, conventional polymeric films, which possess high breakdown strength, are limited due to low permittivity and hence compromise the energy storage capability of capacitors. In order to develop high energy density dielectric materials for pulsed power applications, two hurdles must be overcome: 1) the appropriate selection of materials that possess not only large permittivity but also high breakdown strength, 2) the optimization of material processing to improve morphology of dielectric films to minimize loss during energy extraction process. This thesis will present the development of novel dielectric material, with emphasis on the optimization of material and thin film processing toward improved morphology as ways to achieve high energy density at the material level. After first two chapters of introduction and experimental details, Chapter 3 will demonstrate the improvement of nanocomposite morphology via processing optimization and study its effect on the energy storage characteristics of nanocomposites thereof. Chapter 4 will investigate dielectric sol-gel materials containing dipolar cyano side groups, which are relatively a new class of material for pulsed power applications. Finally, Chapter 5 will discuss the effect of tunneling barrier layer on sol-gel films to mitigate charge carrier injection and associated conduction and breakdown phenomena, which would be significantly detrimental to the energy storage performance of dielectric sol-gel films.
8

Experimental studies of laser driven proton acceleration from ultrashort and highly intense laser pulse interaction with overdense plasma

Kuk, Donghoon 16 February 2015 (has links)
The generation of high current multi-MeV protons and ions by irradiation of short pulse high intense laser on an ultra-thin target has been observed and subjected great interest in recent. When ultra-thin overdense target is irradiated by focused ultraintense laser pulse, hot electrons are generated by various mechanisms and they generate energetic ion beams. In TNSA, a quasi-electrostatic field is produced on the target rear surface when the the laser pulse interacts with overdense target, driving hot electrons go torward the target rear surface. However, this mechanism results in a range of field gradients leading to a broad proton energy distribution typically. To overcome the issue, an alternative accelration mechanism has been presented to achieve the quasi-monoenergetic proton acceleration and the mechanism is called Radiation Pressure Acceleration. In the RPA, the radiation pressure push electrons into the target smoothly and setting up an electrostatic field by the laser pressure. In this thesis, we study two alternative experimental methods for the quasi-monoenergetic proton acceleration and find experimental feasibility of the presented methods from other research groups. / text
9

Novel Nano-Structured Silicon and Co3O4 Materials as Anode for High-Performance Lithium Ion Batteries

Feng, Kun 27 August 2014 (has links)
Lithium ion batteries (LIBs) play an essential role in modern life. Although relatively unknown throughout past decades, LIBs have supplanted several categories of chemically rechargeable batteries including lead-acid, nickel-cadmium and nickel-hydrogen batteries. Nowadays, LIBs dominate the market of portable electronic devices such as mobile phones, digital cameras and laptops. As the price of petroleum keeps increasing, electrically powered or assisted vehicles using LIBs are similarly gaining in the automotive market. However, current state-of-art LIBs using graphite as their electrical anode and Li metal oxides as the cathode are facing major challenges. For example, the current LIBs are approaching their capacity limit. Batteries that can maintain high charge and discharge rates are in great demand, which has not been adequately addressed by modern LIBs. Safety issues with these current batteries are being reported even from some market leaders such as Boeing and Tesla. Herein, several categories of novel anode materials have been investigated in a search for promising candidates to enable evolution of the next generation of lithium ion batteries. This research included silicon-carbon based materials, especially silicon-graphene (Si-G) materials and their derivatives, and transitional metal based materials, e.g., cobalt oxide (Co3O4). In this proposed work, Si-G composites were synthesized via a freeze-drying method; the conditions of the synthesis were controlled and adjusted to obtain a Si-G composite with the most promising morphology as well as battery performance. Based on preliminary results, graphene wrapped silicon electrodes showed significantly improved cycling performance than bare silicon electrodes. At high charge and discharge rates it was found that Si-G composites also showed superior stability and capacity retention over bare silicon electrodes. After 200 cycles, the optimized Si-G composite maintained a capacity retention close to 100%, with a capacity of 800 mAh g-1 at a 0.2 C rate and 600 mAh g-1 at a 1 C rate. This observation was a prominent increase from the performance of commercial graphite-based batteries at a theoretical capacity 372 mAh g-1. Considering the facile fabrication method and increasing use of commercial silicon nano-particles (Si-NPs) into account, Si-G composites could be a promising candidate for the anode material in LIBs. Extended work on the Si-G project also involved further decorations based on the Si-G composite synthesized from the method previously mentioned, as well as improvement on the synthesis method to make it more applicable for industrial purposes. Cobalt Oxide (Co3O4), a transitional metal oxide which has a theoretical capacity of 890 mAh g-1, draws attention as an anode material in LIBs due to its capacity compared to graphite and heavily reduced degradation compared to silicon. A novel electrode fabrication procedure was adopted in this research together with a simple material-synthesizing methodology. Similar to common silicon electrodes, Co3O4 suffers from poor electron conductivity volume change upon cycling. Herein the Co3O4 active material is directly deposited on stainless steel mesh, serving as both a current collector and a substrate for the active material. Through adapting the electrode fabrication process by directly depositing on the stainless steel electron conductor, the traditional conductive carbon material and binder requirements can be avoided. As a result, the process is reduced in both cost and complexity. The presented novel electrode design facilitates both ion diffusion and electron transportation, improving the overall performance of the material in LIBs. After 100 cycles of charge and discharge, Co3O4 on stainless steel mesh shows a capacity around 770 mAh g-1, which is more than twice that of graphite. The capacity retention was around 90% in this case.
10

Selective Deuteron Acceleration using Target Normal Sheath Acceleration

Morrison, John T. 23 July 2013 (has links)
No description available.

Page generated in 0.1263 seconds