• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 19
  • 19
  • 19
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Caracteriza??o de comp?sitos Nb-20%cu obtidos por moagem de alta energia e sinterizados por fase l?quida

Melchiors, Gilberto 31 January 2011 (has links)
Made available in DSpace on 2014-12-17T14:06:58Z (GMT). No. of bitstreams: 1 GilbertoM_DISSERT_PARCIAL.pdf: 494543 bytes, checksum: da2d1ceb188b373977eacdb9f150846c (MD5) Previous issue date: 2011-01-31 / In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite / Neste trabalho, foi estudada a forma??o de um comp?sito do metal refrat?rio ni?bio com o cobre, atrav?s do processo de moagem de alta energia e sinteriza??o por fase l?quida. A MAE pode ser usada para sintetizar p?s comp?sitos com alta homogeneidade e fina distribui??o de tamanho de part?culas. Ela tamb?m pode produzir a solubilidade s?lida em sistemas imisc?veis como o Nb-Cu, ou, estender a solubilidade de sistemas com limitada solubilidade. Portanto, no sistema imisc?vel Nb-Cu, a moagem de alta energia foi utilizada com sucesso para a obten??o das part?culas do p? comp?sito. Inicialmente a forma??o das part?culas comp?sitas durante a MAE e o efeito dessa t?cnica de prepara??o na microestrutura do material foi avaliada. Quatro cargas de p?s de Nb e Cu contendo 20% em massa de Cu foram sintetizados por MAE em um moinho de bolas tipo planet?rio, sob diferentes per?odos de moagem. A influ?ncia do tempo de moagem nas part?culas met?licas ? avaliada no decorrer do processo, atrav?s da retirada de amostras em tempos parciais da moagem. Ap?s a compacta??o sob diferentes for?as, as amostras foram sinterizadas em um forno ? v?cuo. A sinteriza??o por fase l?quida destas amostras preparadas por MAE produziu uma estrutura homog?nea e com granula??o refinada. As part?culas comp?sitas que formam as amostras sinterizadas, s?o a jun??o de uma fase dura (Nb) com alto ponto de fus?o, e uma fase d?ctil (Cu) de baixo ponto de fus?o e de elevadas condutividades t?rmica e el?trica. Com base nestas propriedades, o sistema Nb-Cu ? um material em potencial para in?meras aplica??es, como contatos el?tricos, eletrodos de solda, bobinas para gera??o de altos campos magn?ticos, dissipadores de calor e absorvedores de microondas, que s?o acoplados a dispositivos eletr?nicos. As t?cnicas de caracteriza??o utilizadas neste estudo, foram a granulometria ? laser para avaliar a homogeneidade e o tamanho das part?culas, e a difra??o de raios-X, na identifica??o das fases e an?lise da estrutura cristalina dos p?s durante a moagem. J? a morfologia e a dispers?o das fases nas part?culas do p? comp?sito, assim como as microestruturas das amostras sinterizadas, foram observadas atrav?s de microscopia eletr?nica de varredura (MEV). Posteriormente, as amostras sinterizadas foram avaliadas quanto ? densidade e densifica??o. E, finalmente, foram caracterizadas atrav?s de t?cnicas de medi??o da condutividade el?trica e microdureza Vickers, cujas propriedades s?o analisadas em fun??o dos par?metros de obten??o do comp?sito
22

An?lise do efeito do tempo da moagem de alta energia no tamanho de cristalito e microdeforma??o da rede cristalina do WC-Co

Pinto, Gisl?ine Bezerra 19 March 2008 (has links)
Made available in DSpace on 2014-12-17T14:57:41Z (GMT). No. of bitstreams: 1 GislaineBP.pdf: 2931348 bytes, checksum: a3914c6b0349281b46081bda792536cc (MD5) Previous issue date: 2008-03-19 / Hard metals are the composite developed in 1923 by Karl Schr?ter, with wide application because high hardness, wear resistance and toughness. It is compound by a brittle phase WC and a ductile phase Co. Mechanical properties of hardmetals are strongly dependent on the microstructure of the WC Co, and additionally affected by the microstructure of WC powders before sintering. An important feature is that the toughness and the hardness increase simultaneously with the refining of WC. Therefore, development of nanostructured WC Co hardmetal has been extensively studied. There are many methods to manufacture WC-Co hard metals, including spraying conversion process, co-precipitation, displacement reaction process, mechanochemical synthesis and high energy ball milling. High energy ball milling is a simple and efficient way of manufacturing the fine powder with nanostructure. In this process, the continuous impacts on the powders promote pronounced changes and the brittle phase is refined until nanometric scale, bring into ductile matrix, and this ductile phase is deformed, re-welded and hardened. The goal of this work was investigate the effects of highenergy milling time in the micro structural changes in the WC-Co particulate composite, particularly in the refinement of the crystallite size and lattice strain. The starting powders were WC (average particle size D50 0.87 μm) supplied by Wolfram, Berglau-u. Hutten - GMBH and Co (average particle size D50 0.93 μm) supplied by H.C.Starck. Mixing 90% WC and 10% Co in planetary ball milling at 2, 10, 20, 50, 70, 100 and 150 hours, BPR 15:1, 400 rpm. The starting powders and the milled particulate composite samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to identify phases and morphology. The crystallite size and lattice strain were measured by Rietveld s method. This procedure allowed obtaining more precise information about the influence of each one in the microstructure. The results show that high energy milling is efficient manufacturing process of WC-Co composite, and the milling time have great influence in the microstructure of the final particles, crushing and dispersing the finely WC nanometric order in the Co particles / O metal duro ? um comp?sito de matriz met?lica que tem grande aplica??o devido as suas propriedades, que aliam alta dureza e resist?ncia ao desgaste ? tenacidade. ? composto por uma fase fr?gil, o WC, e uma fase d?ctil, que pode ser o cobalto, o ferro ou o n?quel. Destes comp?sitos, o de maior destaque ? o WC-Co, que foi desenvolvido na d?cada de 20 e vem sendo estudado desde ent?o. As propriedades mec?nicas do comp?sito WC-Co, s?o dependentes das caracter?sticas microestruturais dos materiais de partida. Neste contexto, a obten??o do metal duro a partir de part?culas nanom?tricas vem sendo estudada. Existem v?rios m?todos de fabrica??o de metal duro WC-Co nanoparticulado, dentre as principais t?cnicas, a moagem de alta energia em moinho planet?rio, se mostra eficiente para este fim. Nesse processo, os p?s s?o submetidos a cont?nuos impactos, que provocam significativas altera??es em sua microestrutura. A fase fr?gil ? refinada at? a escala nanom?trica e a fase d?ctil ? deformada e soldada, formando placas, devido o excesso de deforma??o pl?stica, as placas tornam-se encruadas e sofrem fratura fr?gil. Simultaneamente as part?culas fr?geis s?o inseridas na fase d?ctil formando assim um comp?sito com matriz de cobalto pouco ou muito deformado e part?culas refinadas e dispersas de carbeto de tungst?nio. Estas caracter?sticas dependem das condi??es de moagem empregada. Neste trabalho foi realizada uma an?lise das caracter?sticas deste comp?sito quanto ao tamanho de cristalito, grau de encruamento, e morfologia. O principal objetivo deste trabalho ? investigar o efeito do tempo da moagem de alta energia nas altera??es microestruturais que ocorrem no comp?sito WC-Co, no que diz respeito ao refinamento das part?culas e a microdeforma??o da rede cristalina. Neste contexto foram utilizadas as t?cnicas de difra??o de raios X (DRX) e microscopia eletr?nica de varredura (MEV). A t?cnica utilizada para an?lise de tamanho de cristalito e microdeforma??o da rede cristalina foi o M?todo de Rietveld. Os resultados mostram que a moagem de alta energia foi eficiente na produ??o do comp?sito WC-Co com part?culas de WC nanom?tricas pouco ou muito encruadas
23

Desenvolvimento de revestimentos nanoestruturados de Cr3C2-25(Ni20Cr) / Development of Cr3C2-25(Ni20Cr) nanostructured coatings

Cecilio Alvares da Cunha 11 September 2012 (has links)
O presente estudo está dividido em duas partes. A primeira parte está relacionada à preparação de pós de Cr3C2-25(Ni20Cr) nanoestruturados através do processo de moagem de alta energia, bem como à caracterização dos pós moídos e no estado como recebido. A análise dos dados obtidos nesta etapa do trabalho foi feita utilizando-se uma abordagem essencialmente teórica. A segunda parte deste estudo refere-se à produção e caracterização de revestimentos preparados com os pós de Cr3C2-25(Ni20Cr) nanoestruturados e como recebido. O comportamento destes revestimentos sob erosão-oxidação em alta temperatura foi comparado com base em uma abordagem de caráter mais tecnológico. O tamanho médio de cristalito do pó de Cr3C2-25(Ni20Cr) decresceu rapidamente de 145 nm para 50 nm nos estágios iniciais de moagem e, posteriormente, com o aumento do tempo de moagem, decresceu mais lentamente até atingir um estado estacionário para um tamanho de cristalito em torno de 10 nm. Este estado estacionário corresponde ao início do processo de recuperação dinâmica. A máxima deformação da rede cristalina (δ = 1,17%) foi observada para pós moídos por 16 horas, caracterizando um tamanho crítico de cristalito da ordem de 28 nm. Por outro lado, o parâmetro de rede atingiu um mínimo para pós moídos por 16 horas. Após atingir o tamanho crítico de cristalito, a densidade de discordâncias praticamente não mais varia (estado estacionário) e toda deformação plástica posteriormente introduzida no material é acomodada através de eventos que ocorrem nos contornos de grão, particularmente por meio do processo designado deslizamento de contorno de grão (grain boundary sliding). A energia de deformação armazenada na rede cristalina dos pós de Cr3C2-25(Ni20Cr) moídos com diferentes tempos de moagem foi determinada por meio de medidas da variação de entalpia. Estes resultados indicaram que a máxima variação de entalpia (ΔH = 722 mcal) também ocorreu para pós moídos por 16 horas. Analogamente, a máxima variação do calor específico (ΔCp = 0,278 cal/gK) ocorreu para pós moídos por 16 horas. As seguintes propriedades mecânicas dos revestimentos de Cr3C2-25(Ni20Cr), preparados utilizando-se o processo HVOF de aspersão térmica, foram determinadas: microdureza Vickers, módulo de Young e tenacidade à fratura. As propriedades dos revestimentos preparados com os pós nanoestruturados e como recebido foram comparadas. A dureza e o módulo de Young dos revestimentos preparados com os pós nanoestruturados foram aproximadamente 26% maiores que aqueles preparados com os pós como recebido. A tenacidade à fratura dos revestimentos nanoestruturados foi aproximadamente 36% maior do que o verificado para os revestimentos produzidos com pós no estado como recebido. A resistência à erosão-oxidação do revestimento produzido com o pó nanoestruturado foi em torno de 52% maior do que a do revestimento preparado com o pó no estado como recebido, a 800ºC. Ambos os revestimentos mostraram um aumento da taxa de erosão-oxidação para temperaturas acima de 450ºC. / This study is divided in two parts. The first part is about the preparation of nanostructured Cr3C2-25(Ni20Cr) powders by high energy milling followed by characterization of the milled and the as received powder. Analyses of some of the data obtained were done using a theoretical approach. The second part of this study is about the preparation and characterization of coatings prepared with the nanostructured as well as the as received Cr3C2-25(Ni20Cr) powders. The high temperature erosion-oxidation (E-O) behavior of the coatings prepared with the two types of powders has been compared based on a technological approach. The average crystallite size of the Cr3C2-25(Ni20Cr) powder decreased rapidly from 145 nm to 50 nm in the initial stages of milling and thereafter decreased slowly to a steady state value of around 10 nm with further increase in milling time. This steady state corresponds to the beginning of a dynamic recovery process. The maximum lattice strain (δ = 1,17%) was observed in powders milled for 16 hours, and this powders critical crystallite size was 28 nm. In contrast, the lattice parameter attained a minimum for powders milled for 16 hours. Upon reaching the critical crystallite size, the dislocation density attained a steady state regime and all plastic deformation introduced in the material there after was in the form of events occurring at the grain boundaries, due mainly to grain boundary sliding. The deformation energy stored in the crystal lattice of the Cr3C2-25(Ni20Cr) powders milled for different times was determined from enthalpy variation measurements. These results indicated that the maximum enthalpy variation (ΔH = 722 mcal) also occurred for powders milled for 16 hours. In a similar manner, the maximum specific heat variation (ΔCp = 0,278 cal/gK) occurred for powders milled for 16 hours. The following mechanical properties of Cr3C2-25(Ni20Cr) coatings prepared using the HVOF thermal spray process were determined: Vickers micro-hardness, the Young Modulus and the fracture toughness. The properties of the coatings prepared with the nanostructured and the as received powders were compared. The hardness and Young Modulus of the coatings prepared with nanostructured powders were approximately 26% higher than that of the coatings prepared with as received powders. The fracture toughness of the nanostructured coating was 36% higher. The erosion-oxidation resistance of the coating produced with the nanostructured powder was around 52% higher than that of the coating prepared with the as received powders at 800 ºC. The E-O wastage of both types of coatings increased with temperature beyond 450 ºC.
24

Comportamento da adi??o do carbeto de ni?bio (nBC) na matriz met?lica do a?o ferr?tico 15kH2mfa / Behavior of adition of niobium carbide (nBc) in metallic matrix of ferritic steel 15kH2mfa

Silva J?nior, Jos? Ferreira da 01 November 2012 (has links)
Made available in DSpace on 2014-12-17T14:07:10Z (GMT). No. of bitstreams: 1 JoseFSJ_TESE.pdf: 4970258 bytes, checksum: fcd6ec64fc7d0cdced502c9b8b4dd5f9 (MD5) Previous issue date: 2012-11-01 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450?C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250?C during 60 minutes. After sintering the samples were normalized at 950?C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm?, better than the melted steel as received that was 7,81g/cm?. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure / O a?o 15Kh2MFA, da fam?lia dos a?os CrMoV, pode ser utilizado em turbinas para gera??o de energia, vasos de press?o, reatores nuclear ou aplica??es, onde o material ? submetido a temperaturas de servi?o entre 250 e 450?C. Uma forma de melhorar as propriedades do a?o, para que ele trabalhe a temperaturas mais altas ou que se torne mais est?vel ? adicionar part?culas de segunda fase na sua matriz. Estas part?culas podem estar na forma de ?xidos, carbetos, nitretos ou at? mesmo em solu??o s?lida quando alguns elementos qu?micos s?o adicionados ao material. Neste contexto, este trabalho objetiva estudar o efeito da adi??o de 3% de carbeto de ni?bio na matriz met?lica do a?o 15Kh2MFA. Para isto a metalurgia do p? foi a rota empregada para a produ??o deste comp?sito de matriz met?lica. Para tal, duas moagens distintas foram realizadas. A primeira com o a?o 15Kh2MFA e a segunda com o a?o 15Kh2MFA com adi??o de 3% de carbeto de ni?bio. A moagem de alta energia foi realizada durante 5 horas. Em seguida, os dois p?s produzidos foram sinterizados em um forno a v?cuo (10-4torr) a temperaturas de 1150?C e 1250?C durante 60 minutos. Ap?s a sinteriza??o as amostras foram submetidas ao tratamento t?rmico de normaliza??o a 950?C. Os resultados mostraram que a adi??o do carbeto de ni?bio ajuda o processo de cominui??o das part?culas, quando comparado com o a?o sem o carbeto de ni?bio. O carbeto de ni?bio tem um papel fundamental na densifica??o das amostras durante a sinteriza??o, levando a densidade 7,86g/cm?, que ? maior do que a densidade do a?o fundido recebido que era de 7,81g/cm?. Apesar desta boa densifica??o, ap?s a normaliza??o, o NbC n?o contribuiu de forma significativa para aumento da dureza, onde a melhor dureza obtida para o a?o com NbC foi de 156HV e para o a?o puro foi de 212HV. Isto se deve ao fato de que, quando o NbC foi adicionado ao a?o, formou-se uma estrutura perl?tica, enquanto que, com o a?o sem adi??o de NbC, submetido as mesmas condi??es, obteve-se uma estrutura bain?tica
25

Fabricação de compósitos de matriz metálica da liga de alumínio AA1100 com reforço cerâmico de Óxido de Zinco através de técnicas de metalurgia do pó

LINS, André Emanoel Poroca 28 January 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-04T13:36:40Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Mestrado_(Andre E. Poroca Lins)_Final.pdf: 64666922 bytes, checksum: 584e69803acfdd0b31e2b58094eb9b6c (MD5) / Made available in DSpace on 2017-04-04T13:36:40Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Mestrado_(Andre E. Poroca Lins)_Final.pdf: 64666922 bytes, checksum: 584e69803acfdd0b31e2b58094eb9b6c (MD5) Previous issue date: 2015-01-28 / Os materiais com óxido de zinco vêm passando por um rápido desenvolvimento devido as suas potenciais aplicações em uma ampla variedade de áreas tecnológicas, tais como eletrônica, catálise, cerâmica, fotodetectores, sensores, células solares, entre outras. Porém, torna-se fundamental o estudo das propriedades, condições de síntese e aplicações. Um material que vem se destacando devido as suas propriedades mecânicas, elétricas, magnéticas, ópticas e químicas é o óxido de zinco (ZnO). No óxido de zinco tais propriedades dependem principalmente do tamanho e morfologia de suas partículas. O avanço no desenvolvimento de materiais com óxido de zinco vem recebendo bastante destaque no meio científico e se tornando de fundamental importância devido à interdisciplinaridade entre vários campos da ciência, e por permitir a obtenção de novos materiais com melhores propriedades físicas e químicas. O objetivo principal desse trabalho é produzir um compósito de matriz de alumínio AA1100, reforçado com material cerâmico, o óxido de zinco (ZnO), utilizando o processo de metalurgia do pó e técnica de moagem de alta energia. Para tanto, utilizou-se a caracterização por microscopia ótica (MO), microscopia eletrônica de varredura (MEV), difração de raios X (DRX) e difração a laser para avaliar as características do compósito, além de verificar as propriedades mecânicas inerentes e constatar a superioridade em relação a materiais produzidos de forma convencional. No primeiro momento é feita a avaliação da mistura dos pós produzidos, segundo variação percentual do reforço e tempo de processamento, com o objetivo de obter dados iniciais. Em seguida, é feito o processamento das misturas dos pós para compactação e sinterização; visando obter pastilhas do compósito, nas quais serão feitas ensaios e caracterização microestrutural, e por fim avaliação de resultados e conclusões. / The zinc oxide composites materials are undergoing rapid development due to their potential applications in a wide variety of technological areas such as electronics, catalysis, ceramics, photodetectors, sensors, solar cells, among others. However, it is fundamental the studies of the properties, synthesis conditions and applications. A material that has been highlighted due to its mechanical, electrical, magnetic, optical and chemical properties is the zinc oxide (ZnO). In zinc oxide such properties mainly depend on the size and morphology of the particles. The technological progress in the development of materials with zinc oxide has been receiving a lot of attention in the scientific community and becoming of paramount importance due to several interdisciplinary fields of science, and for allowing the obtaining of new materials with improved physical and chemical properties. The main objective of this work is to produce matrix composites of aluminum alloy AA1100, reinforced with ceramic material, the zinc oxide (ZnO), the process of using powder metallurgy technique and high energy milling. For this we used the characterization by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD, and laser diffraction to evaluate and compare the features of composite, besides checking the mechanical properties and see the inherent superiority over conventionally produced material. At first assessment is made of the mixture of powders produced according to percentage change in the reinforcement and processing time, in order to obtain initial data. Then the processing is done mixtures of powders for compaction and sintering, to obtain tablets composite in which are made tests and microstructural characterization, and ultimately evaluating the results and conclusions.

Page generated in 0.0796 seconds