• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Students' Reasoning with Geometric Proofs that use Triangle Congruence Postulates

Winer, Michael Loyd 18 December 2017 (has links)
No description available.
2

Determining High School Geometry Students' Geometric Understanding Using van Hiele Levels: Is There a Difference Between Standards-based Curriculum Students and NonStandards-based Curriculum Students?

Genz, Rebekah Loraine 05 July 2006 (has links) (PDF)
Research has found that students are not adequately prepared to understand the concepts of geometry, as they are presented in a high school geometry course (e.g. Burger and Shaughnessy (1986), Usiskin (1982), van Hiele (1986)). Curricula based on the National Council of Teachers of Mathematics (NCTM) Standards (1989, 2000) have been developed and introduced into the middle grades to improve learning and concept development in mathematics. Research done by Rey, Reys, Lappan and Holliday (2003) showed that Standards-based curricula improve students' mathematical understanding and performance on standardized math exams. Using van Hiele levels, this study examines 20 ninth-grade students' levels of geometric understanding at the beginning of their high school geometry course. Ten of the students had been taught mathematics using a Standards-based curriculum, the Connected Mathematics Project (CMP), during grades 6, 7, and 8, and the remaining 10 students had been taught from a traditional curriculum in grades 6, 7, and 8. Students with a Connected Mathematics project background tended to show higher levels of geometric understanding than the students with a more traditional curriculum (NONcmp) background. Three distinctions of students' geometric understanding were identified among students within a given van Hiele level, one of which was the students' use of language. The use of precise versus imprecise language in students' explanations and reasoning is a major distinguishing factor between different levels of geometric understanding among the students in this study. Another distinction among students' geometric understanding is the ability to clearly verbalize an infinite variety of shapes versus not being able to verbalize an infinite variety of shapes. The third distinction identified among students' geometric understanding is that of understanding the necessary properties of specific shapes versus understanding only a couple of necessary properties for specific shapes.
3

An Investigation Of High School Geometry Students Proving And Logical Thinking Abilities And The Impact Of Dynamic Geometry Software On Student Performance

Subramanian, Lalitha 01 January 2005 (has links)
The purpose of this study was to investigate (a) the role of a yearlong geometry course on high school geometry students' logical thinking and proof construction abilities, (b) the linkage between students' logical thinking and proof construction abilities, and (c) the impact of dynamic geometry software on students' performance. In addition, this study also ventured to determine if the type of geometry course had any impact on students' logical thinking and proof construction achievement. The sample for the study consisted of 1,325 high school geometry students enrolled in regular, honors, and mastery courses in four high schools from the school district affiliated with the Local Education Agency (LEA) during the academic year 2004-2005. Geometer's Sketchpadä (GSP) was assumed to represent the dynamic geometry software. Responses of students on two pre-tests and two post-tests, each with one on logical thinking and one on proof, were analyzed to address the research questions. Results of the analyses indicated no significant effect of the yearlong geometry course on the performance of students on proof tests but a fairly significant effect on the tests of logical thinking. Use of GSP was found to have some impact on honors and mastery students' performance on proof post-tests. Honors students showed a higher logical thinking level than their regular and mastery counterparts in both GSP and non-GSP groups. There was a significant positive correlation between students' performance on the tests of logical thinking and proof.

Page generated in 0.07 seconds