• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

METALLOGENETIC CONTROLS ON MIOCENE HIGH-SULPHIDATION EPITHERMAL GOLD MINERALIZATION, ALTO CHICAMA DISTRICT, LA LIBERTAD, NORTHERN PERÚ

Montgomery, Allan Trevor 05 April 2012 (has links)
The Alto Chicama district, Central Andean Cordillera Occidental, La Libertad, northern Perú, hosts the 14 M oz, Miocene Lagunas Norte high-sulphidation epithermal Au-(Ag) deposit (Latitude 7° 56ʹ30ʺ S; Longitude 78°14ʹ50ʺ W), in addition to several important, epithermal and mesothermal precious ± base-metal vein systems and porphyry Cu-Au-(Mo) deposits and prospects. The district is underlain by lower Oligocene-to-Middle Miocene, subaerial, Calipuy Supergroup volcanic rocks, unconformably overlying Upper Jurassic – Lower Cretaceous marine sedimentary strata affected by late Eocene-early Oligocene thin-skinned fold and thrust deformation. Mineralization at Lagunas Norte is largely hosted by intensely-folded Valanginian Chimú Formation quartz arenite, but extends into overlying, weakly-deformed, Lower Miocene dacitic volcaniclastic deposits. Fold- and thrust-related deformation at the deposit, and subsequent magmatic and hydrothermal activity, were localized along a long-lived, crustal-scale cross-strike discontinuity. Hydrothermal activity at Lagunas Norte was associated with local extension within an overall regional compressive regime. Ore formation occurred during the terminal stages of andesitic-to-dacitic magmatism in the deposit area, immediately following the sector collapse of an adjacent volcanic centre, and during eruption of late-stage peripheral dacitic domes. Intense advanced-argillic alteration occurred in at least two major pulses over a ~ 0.9 m.y. period, implying repeated magma influx in a shallow subjacent chamber. The ensuing Au-(Ag)-pyrite-enargite deposition resulted from mixing of magmatic vapour with oxidized groundwaters, a process stimulated by the contiguous incision of a steep-walled valley-pediment. The local volcanic rocks record a transition from “normal arc” to higher-pressure “adakitic” magmatism, initiated during ore deposition at Lagunas Norte, but exhibited by the entire Calipuy arc in northern Perú, and interpreted to reflect the destabilization of plagioclase and stabilization of garnet in inferred lower-crustal magmas. The progressive depletion of 18O and D in meteoric water recorded in late Oligocene-to-Late Miocene hypogene and supergene minerals is in permissive agreement with major uplift from ~ 1000 m to over 3000 m a.s.l. during hydrothermal activity. Hydrothermal activity and related ore deposition at Lagunas Norte unambiguously predated, by at least 2 m.y., the impingement of the aseismic Nazca Ridge at the Perú Trench and the ensuing flattening of the subducting slab / Thesis (Ph.D, Geological Sciences & Geological Engineering) -- Queen's University, 2012-04-05 11:09:14.751
2

A Palaeoproterozoic high-sulphidation epithermal gold deposit at Orivesi, southern Finland

Kinnunen, A. (Aulis) 06 May 2008 (has links)
Abstract The metamorphosed Palaeoproterozoic Orivesi gold deposit in southern Finland is located within the Tampere Schist Belt, which belongs to the Svecofennian domain. The Orivesi mine, run by Outokumpu Mining Oy, was in production from 1994 to 2003, during which time a total of approximately 1.7 million tons of ore was extracted, with an Au content of 9.31 g/t, implying a total output 13.115 tons of gold in concentrate. The hydrothermal alteration halo can be divided successively into chlorite-dominant, sericite-dominant and quartz-dominant rocks from the outer zone inwards. The host rocks of the ore are quartz rocks with andalusite-rich quartz rocks. Topaz-bearing rocks also occur in the inner part of the alteration halo. In addition to Au, the elements Ag, Te, Bi, Sb, S, As, Se, Cu, Zn, Pb, Sn and Mo are enriched to varying degrees within the alteration halo. The main ore minerals include base metal sulphides, sulphosalts and tellurides. Pyrite is the most common sulphide. The sulphosalts are represented by tetrahedrite, bournonite, boulangerite and meneghinite. The most common gold, gold-silver and silver tellurides are calaverite, montbrayite, petzite, kostovite, sylvanite and hessite. Other known tellurides include tellurobismuthite, altaite, melonite, frohbergite, tsumoite, tetradymite and rucklidgeite. Gold occurs mostly in fine-grained native grains containing an average of 5% Ag. The native gold is usually of very small grain size, generally < 20 µm. Most of the gold grains in the deposit occur as intergrowths with tellurides. The adjacent hypabyssal intrusion is an obvious source of both hydrothermal fluids and metals. A comb quartz layering has been discovered in the transition zone between the intrusion and the alteration halo. The Orivesi deposit is thought to belong to the high-sulphidation epithermal type. Soon after its formation the deposit encountered deformation and metamorphism that amounted to lower amphibolite facies conditions. The subsequent retrograde metamorphism caused the reappearance of some hydrothermal minerals typical of high-sulphidation epithermal deposits.

Page generated in 0.0884 seconds