• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geochronology, Petrography, Geochemical Constraints, and Fluid Characterization of the Buriticá Gold Deposit, Antioquia Department, Colombia

Lesage, Guillaume Unknown Date
No description available.
2

Stratigraphy, Structure, and Mineralization of Kinsley Mountain, Elko County, Nevada

January 2012 (has links)
abstract: The Kinsley Mountain gold deposit of northeastern Nevada, located ~70 km south of Wendover, Nevada, contains seven sediment-hosted, disseminated-gold deposits, in Cambrian limestones and shales. Mining ceased in 1999, with 138,000 ounces of gold mined at an average grade between 1.5-2.0 g/t. Resource estimates vary between 15,000 and 150,000 ounces of gold remaining in several mineralized pods. Although exploration programs have been completed within the study area, the structural history and timing of precious-metal mineralization are still poorly understood. This study aims to better understand the relation between stratigraphy, structural setting, and style of gold mineralization. In order to accomplish these goals, geological mapping at a scale of 1:5,000 was conducted over the property as well as analysis of soil and rock chip samples for multi-element geochemistry. Using cross-cutting relationships, the structural history of Kinsley Mountain has been determined. The deformation can broadly be categorized as an early stage of compressional tectonics including folding, attenuation of the stratigraphy, and thrust faulting. This early stage was followed by a series of extensional deformation events, the youngest of which is an ongoing process. The structural history determined from this study fits well into a regional context and when viewed in conjunction with the mineralization event, can be used to bracket the timing of gold mineralization. The northwest oriented structure responsible for concentrating decalcification, silicification, and mineralization has two generations of cave fill breccias that both pre- and post-date the gold event. The statistical analysis of multi-element geochemistry for rock chip and soil samples has determined that Au is most strongly associated with Te, while weaker correlations exist between Au and Ag, As, Hg, Mo, Sb, Tl, and W. This suite of elements is associated with an intrusion driven system and is atypical of Carlin-type gold systems. From these elemental associations the gold mineralization event is thought to be controlled by the emplacement of a felsic intrusion. The responsible intrusion may be an exposed quartz monzonite to the south of the study area, as suggested by possible zonation of Cu, Pb, and Zn, which decrease in concentration with increasing distance from the outcropping stock. Alternatively, an unexposed intrusion at depth cannot be ruled out as the driver of the mineralizing system. / Dissertation/Thesis / M.S. Geological Sciences 2012
3

Genetic Investigation And Comparison Of Kartaldag And Madendag Epithermal Gold Mineralization In Canakkale-region, Turkey

Unal, Ezgi 01 September 2010 (has links) (PDF)
This thesis study is concerned with the genetic investigation of two epithermal gold deposits (Madendag and Kartaldag) in &Ccedil / anakkale, NW Turkey. The methodology comprises field and integrated laboratory studies including mineralogic-petrographic, geochemical, isotopic, and fluid inclusion analysis. Kartaldag deposit, hosted by dacite porphyry, is a typical vein deposit associated with four main alteration types: i) propylitic, ii) quartz-kaolin, iii) quartz-alunitepyrophyllite, iv) silicification, the latter being characterized by two distinct quartz generations as early (vuggy) and late (banded, colloform). Primary sulfide minerals are pyrite, covellite and sphalerite. Oxygen and sulfur isotope analyses, performed on quartz (&delta / 18O: 7.93- 8.95 &permil / ) and pyrite (&delta / 34S: -4.8 &permil / ) separates, suggest a magmatic source for the fluid. Microthermometric analysis performed on quartz yield a temperature range of 250-285 &ordm / C, and 0-1.7 wt % NaCl eqv. salinity. Madendag deposit, hosted by micaschists, is also vein type associated with two main alteration types: illite and kaolin dominated argillization and silicification, characterized by two distinct quartz phases as early and late. Oxygen isotope analyses on quartz (&delta / 18O: 9.55-18.19 &permil / ) indicate contribution from a metamorphic source. Microthermometric analysis on quartz yield a temperature range of 235-255 &ordm / C and 0.0-0.7 wt % NaCl eqv. salinity. The presence of alunite, pyrophyllite and kaolinite, vuggy quartz and covellite suggest a high-sulfidation epithermal system for Kartaldag. On the other hand, Madendag is identified as a low- sulfidation type owing to the presence of neutral pH clays and typical low temperature textures (e.g. colloform, comb, banded quartz).
4

Mineralogical characterization of oresamples of different pH in the Björkdal golddeposit, northern Sweden – implications formineral processing

Ekholm, Niklas January 2021 (has links)
The Björkdal gold deposit is situated in the Skellefte mining district, northern Sweden. The ore is mined from a complex system of quartz veins ranging from a few cm to a meter in width. The mineral processing steps at Björkdal comprises a flotation circuit, which performance is dependent on the pH of the ore feed. A total of ten samples from five different ore zones from the underground development was investigated with the purpose of improving the understanding of factors that causes the pH value of rock samples to vary which is deleterious to the metal recovery. The samples were investigated with optical microscopy together with scanning electron microscopy (SEM) and automated mineralogy (QEMSCAN) to carry out the modal mineralogy. The analyses identified a total of 37 different minerals in the samples. Chlorite was identified with significantly higher values in parts of the investigated ore zones and especially in the sample with the highest pH value, suggesting chlorite-hosting shear zones that crosscut the sampled ore zones to be a contributing factor that could be affecting the elevated pH values, resulting in a decreased recovery of gold.
5

Textural characterization of gold in the Björkdal gold deposit, northern Sweden.

Westberg, Fredrik January 2021 (has links)
The Björkdal gold deposit is located in the eastern part of the Skellefte district, northern Sweden. Twenty thin sections from four production areas in the open pit and four drifts from the underground mine were analysed for mineral association and grain size distribution of gold. In addition, the texture of gold was investigated in order to find out how that affects the recovery of gold. The overall gold grain size distribution shows an interval from very fine-grained (2 μm) to coarse grained(856 μm) while the overall median size is 7 μm. Gold from the Quartz Mountain production area displays the smallest median size of 4 μm, whereas gold from the sampled drifts at 340m- and 385m- level has the largest median size of 14 μm. Gold at grain boundary is the dominant textural mode of gold from all sampled locations and varies from 62% to 92%. This is followed by intergrown which ranges between 8% and 29%. Of the sulfides, pyrite, chalcopyrite and pyrrhotite are the most common. Galena and was also present in the samples. Gold is significantly and positively correlated with tellurium (Appendix 10.1.1), and weakly positive correlated to silver and mercury. Gold show a close association to bismuth-tellurides in the samples. Apart from native gold, which is the dominant mineral phase of gold, two additional gold-bearing tellurium minerals were detected with SEM-EDS, a Au-Te-mineral and a Ag-Au-Te-mineral. One additional bismuth-telluride mineral aside from the most commonly occurring tsumoite (BiTe) was also detected with SEM, with a elemental composition of Bi-Te-S. Liberated gold in the tailings was optically identified in two thick sections, TB1-02feb-1 and TB1-07feb-1 (Fig. 32A and B), where the flotation circuit failed to float the free gold. One grain of gold was also identified intergrown with bismuth-telluride as an inclusion in silicate (Fig. 33), where the flotation properties of the larger silicate grain likely dominated in the flotation process. This thesis highlights the importance of further quantitative analysis utilizing SEM/QEMSCAN/MLA to retrieve representative mineralogical data to benefit the mineral processing of the ore from the active mine. Keywords: Björkdal gold deposit, gold, gold-telluride, SEM, mineral association, grain size,geometallurgy.
6

Analyse structurale, pétrologique et métallogénique de la minéralisation aurifère néoprotérozoïque du Granite de Passa Três, Campo Largo – PR, Sud du Brésil : implications sur les relations granite/minéralisation / Strutural, petrological and metellogenic analysis of the Passa Tres granite neoproterozoic gold deposit, Campo Largo – PR, Southern Brazil : Implications on the relationships granite/mineralisation

Dressel, Bárbara 27 July 2018 (has links)
Le Granite Passa Três est situé à l'Est de l'Etat du Paraná, au Sud du Brésil, et est allongé selon une direction NNE-SSW. Sa mise en place se fait au cœur des metapélites mesoprotérozoïques du Groupe Açungui (Province Mantiqueira). La minéralisation d’or du Granite Passa Três est composée par des veines de quartz contenant des quantités variables de fluorite, sulfures et carbonates. Les objectifs principaux de ce travail de thèse sont : de comprendre le modèle de formation du système de veines minéralisées en prenant en compte les relations entre magmatisme, hydrothermalisme, déformation et minéralogie à la fois dans l’espace et dans le temps ; la caractérisation de la nature, de la source et des conditions de dépôt des fluides ; et la caractérisation du modèle métallogénique de ce gisement singulier. Pour arriver à ces objectifs, les méthodes utilisées seront, en sus de la géologie structurale et de terrain : la pétrographie, la géochronologie U-Pb (LA-ICP-MS) sur zircon et 40Ar-39Ar sur muscovite, la microscopie électronique à balayage (MEB), la microsonde électronique, la fluorescence X (XFR), l’analyse isotopique du soufre (δ34S) et l’analyse microthermométrique et RAMAN des inclusions fluides. Les données structurales ont montré la coexistence de deux systèmes principaux de filons minéralisés, l’un N-S et l’autre E-W, avec des pendages de 60-75°W et 45-70°S, respectivement. Les deux systèmes sont interprétés comme contemporains et conjugués. Les corps minéralisés forment des géométries sigmoïdales qui résultent de l’ouverture en pull-aparts résultant de mouvements en faille normale le long de plans de glissement à faible pendage. Le fort pendage des structures minéralisées s’explique par l’enveloppe globale formée par la succession des pull-aparts. Quatre étapes minéralogiques sont à l’origine de la formation du système minéralisé : phase 1 [qtz 1 + fl], phase 2a [qtz 2 + py 2a ± or ± cpy ± aik ± fl ± sph ± musc], phase 2b [qtz 2 + py 2b + or + cpy + aik + ank ± sph ± fl ± musc] et phase 3 [qtz 3 + ank + calc + molyb ± aik ± musc ± fl]. L’or se trouve dans la forme d’or invisible et d’or natif dans des fractures qui affectent les pyrites des phases 2a et b, systématiquement associé avec la chalcopyrite et l’aikinite. L’altération associée à la minéralisation inclue des assemblages composés par muscovite/quartz/pyrite (altération du type greisen) et séricite/carbonate/clinochlore (altération phyllique). Les valeurs δ34S des pyrites (de -0.1‰ à 1.1‰) indiquant que le soufre du dépôt peut être d’origine magmatique. Cette hypothèse est en accord avec l’observation systématique, dans les parties supérieures du granite (sondage et niveaux supérieurs de la mine), de structures caractéristiques de transition magmatique-hydrothermale comme des systèmes aplo-pegmatitiques, des veines de quartz à bordure de K-feldspath, des concentrations de quartz de type stockscheider et des textures de solidification unilatérales (UST). Les résultats de géochronologie confirment cette hypothèse avec des âges U-Pb sur zircon (611.9±4.7 et 611.9±5.6 Ma pour le granite à grain moyen (GEM) et le microgranite (GEF) et 40Ar-39Ar sur muscovite (veines à bordure de K-feldspath : 612.9±2 à 608.8±2 Ma ; veines minéralisées : 611.7±2 à 608.8±2 Ma ; veines de quartz précoces : 608.4±2 Ma) très proches. Ces âges obtenus indiquent que la mise-en-place du granite, l’exsolution du fluide magmatique-hydrothermal et la formation des veines de quartz aurifères ont été réalisées pendant un écart de temps de 5 Ma, entre 613 et 608 Ma. La minéralisation (611 à 608 Ma) contemporaine de la cristallisation du granite (612 à 610 Ma), l’association de l’or avec des minéraux de bismuth (aikinite), la démonstration du contrôle structural sur la formation des veines et les évidences de transition magmatique-hydrothermale en domaine de coupole granitique montrent que le dépôt d’or du Granite Passa Três partage plusieurs similitudes avec les dépôts du type intrusion-related. / The Passa Três Granite is situated in southern Brazil (Paraná State) and presents a NNE-SSW elongated shape. This intrusion is emplaced within metapelites of the Mesoproterozoic Açungui Group (Ribeira Belt, Mantiqueira Province), between the N40E trending Morro Agudo and Lancinha faults. Gold mineralisation is composed of centimetric to metric quartz veins with fluorite, sulphides and carbonates. The main objectives of this work are i) to understand the model of formation of the mineralised veins systems taking into account the relationships between magmatism, hydrothermalism, deformation and mineralogy in space and time; ii) the characterization of the nature, source and emplacement conditions of the ore fluids; and iii) the characterization of a metallogenic model for this singular deposit. In order to reach these purposes, the methods to be applied include, beyond the structural geology and field works: petrography, U-Pb zircon (LA-ICP-MS) and 40Ar-39Ar muscovite geochronology, scanning electron microscopy (SEM), electron-microprobe analyses (EPMA), X-ray fluorescence (XRF), isotopic analysis of sulphur (δ34S), and microthermometric and Raman analysis of fluid inclusions. Structural data showed the coexistence of two major normal mineralised vein systems, one N-S and the other one E-W, with dips of 60-75ºW and 45-70ºS, respectively. Both systems are interpreted to be contemporaneous and conjugated. Orebodies form sigmoidal geometries that resulted of the opening of pull-aparts as a consequence of the normal movements along low-angle fault planes. High-angle dip of the global mineralised structures is explained by the succession of the pull-aparts. Four mineralogical stages resulted in the formation of the mineralised system: phase 1 [quartz 1 + fluorite], phase 2a [quartz 2 + pyrite 2a ± gold ± chalcopyrite ± aikinite ± fluorite ± sphalerite ± muscovite], phase 2b [quartz 2 + pyrite 2b + gold + chalcopyrite + aikinite + ankerite ± sphalerite ± fluorite ± muscovite] and phase 3 [quartz 3 + ankerite + calcite + molybdenite ± aikinite ± muscovite ± fluorite]. Gold occurs as invisible gold and as native grains within fractures that affect pyrite 2a and 2b, commonly associated with chalcopyrite and aikinite. Alteration related to the mineralisation includes muscovite/quartz/pyrite (greisen type alteration) and sericite/carbonato/clinochlore (phyllic alteration) assemblages. The δ34S values of pyrite crystals (from -0.1‰ to 1.1‰) indicate that the sulphur in this deposit may have a magmatic origin. This hypothesis agrees with the systematic observation, within the upper part of the granite (drill holes and superior levels of the mine), of structures typical of magmatic-hydrothermal transition such as aplite-pegmatite systems, quartz veins with K-feldspar border, quartz concentration of stockscheider type and unilateral solidification textures (UST). Geochronological data confirm this hypothesis with U-Pb zircon ages (611.9±4.7 and 611.9±5.6 Ma for medium grained granite facies (GEM) and microgranite (GEF), respectively) and 40Ar-39Ar muscovite dating (veins with K-feldspar border: 612.9±2 to 608.8±2 Ma; mineralised veins: 611.7±2 to 608.8±2 Ma; barren vein: 608.4±2 Ma), that are very close. These ages indicate that the granite emplacement, the magmatic-hydrothermal fluid release and the formation of gold-bearing quartz veins occur during a time lapse of approximately 5 Ma, between 613 and 608 Ma. The mineralisation (611 to 608 Ma) coeval to granite crystallization (612 to 610 Ma), the association of gold with Bi minerals (aikinite), the strong structural control for veins and magmatic-hydrothermal transition features at the roof of a small granitic intrusion suggest that the Passa Três gold deposit shares several similarities with intrusion-related gold deposits.
7

Etude métallogénique du district aurifère de Syama (Mali) : analyse comparative de gisements situés sur une même structure lithosphérique éburnéenne / Metallogenic synthesis of the Syama gold district (Mali) : comparative study of several gold deposits, located in the N-S trending Bagoé greenstone belt of Mali

Traoré, Yollande 23 June 2017 (has links)
Cette thèse correspond à une étude comparative détaillée de trois gisements aurifères birimiens (~ 2 Ga) du craton ouest africain (Syama, Tabakoroni et Tellem), situés sur la ceinture de Bagoé au Mali. La minéralisation se concentre dans les roches où les structures de déformation fragile sont les plus développées (basaltes et métasédiments bréchifiés, microgranite à Tellem) et se développe préférentiellement en bordure des veines. Les sulfures majeurs (pyrite à Syama et pyrite + arsénopyrite à Tabakoroni et Tellem) sont zonés avec : i) un cœur arsénifère riche en inclusions d'albite, d'ankérite et de rutile (accessoirement pyrrhotite); ii) une bordure limpide, globalement moins arsénifère que le coeur mais présentant une fine zonation avec des alternances de zones riches en As et de zones pauvres en As. L'or se présente sous forme d'or invisible inclus dans le réseau cristallin des sulfures, de petits grains individualisés en inclusion dans les sulfures, souvent accompagnés de sulfoantimoniures, notamment la tétraédrite et la chalcostibite, et d'or libre associé au quartz. Les pyrites arsénifères et les arsénopyrites des gisements de la ceinture de Bagoé sont parmi les plus riches en or invisible de tous les gisements d'or de l'Afrique de l'Ouest et tout à fait comparables à ceux de la ceinture d'Ashanti au Ghana. / This thesis presents a comparative study of the Syama, Tabakoroni and Tellem gold deposits, located in the N-S trending Bagoé greenstone belt of Mali. Mineralization is found preferentially along the edges of millimetre- to centimetre-sized quartz, quartz-albite, quartz-ankerite, dolomite-quartz veins developed in tension gaps that formed during brittle deformation. Gold mineralization is mostly associated with pyrite in the three deposits, and also with arsenopyrite at Tabakoroni and Tellem. These sulphides are zoned with (i) an arsenic-rich core containing several albite, ankerite and rutile inclusions (less commonly, pyrrhotite) and (ii) a clear border of finely alternating As-rich and As-poor bands. Gold occurs in the form of i) invisible gold included in their crystal lattices, ii) small individual grains bound to these sulphides, frequently accompanied by sulphoantimonides, mainly tetrahedrite and chalcostibite and iii) free gold associated with quartz. The arseniferous pyrites and arsenopyrites of the Bagoé belt deposits are among the richest in invisible gold in all gold deposits in West Africa and are quite comparable to those of the Ashanti Belt in Ghana.
8

A Palaeoproterozoic high-sulphidation epithermal gold deposit at Orivesi, southern Finland

Kinnunen, A. (Aulis) 06 May 2008 (has links)
Abstract The metamorphosed Palaeoproterozoic Orivesi gold deposit in southern Finland is located within the Tampere Schist Belt, which belongs to the Svecofennian domain. The Orivesi mine, run by Outokumpu Mining Oy, was in production from 1994 to 2003, during which time a total of approximately 1.7 million tons of ore was extracted, with an Au content of 9.31 g/t, implying a total output 13.115 tons of gold in concentrate. The hydrothermal alteration halo can be divided successively into chlorite-dominant, sericite-dominant and quartz-dominant rocks from the outer zone inwards. The host rocks of the ore are quartz rocks with andalusite-rich quartz rocks. Topaz-bearing rocks also occur in the inner part of the alteration halo. In addition to Au, the elements Ag, Te, Bi, Sb, S, As, Se, Cu, Zn, Pb, Sn and Mo are enriched to varying degrees within the alteration halo. The main ore minerals include base metal sulphides, sulphosalts and tellurides. Pyrite is the most common sulphide. The sulphosalts are represented by tetrahedrite, bournonite, boulangerite and meneghinite. The most common gold, gold-silver and silver tellurides are calaverite, montbrayite, petzite, kostovite, sylvanite and hessite. Other known tellurides include tellurobismuthite, altaite, melonite, frohbergite, tsumoite, tetradymite and rucklidgeite. Gold occurs mostly in fine-grained native grains containing an average of 5% Ag. The native gold is usually of very small grain size, generally < 20 µm. Most of the gold grains in the deposit occur as intergrowths with tellurides. The adjacent hypabyssal intrusion is an obvious source of both hydrothermal fluids and metals. A comb quartz layering has been discovered in the transition zone between the intrusion and the alteration halo. The Orivesi deposit is thought to belong to the high-sulphidation epithermal type. Soon after its formation the deposit encountered deformation and metamorphism that amounted to lower amphibolite facies conditions. The subsequent retrograde metamorphism caused the reappearance of some hydrothermal minerals typical of high-sulphidation epithermal deposits.
9

Mineralogical characterization of gold in the Aurora ore zone in the Björkdal gold mine, northern Sweden – implications for metal recovery

Åström, Krister January 2022 (has links)
The Aurora zone is an ore zone which was recently discovered in the Björkdal gold mine, northern Sweden, and it has been the main focus of mining and exploration activities for the past few years (Pressacco et al., 2020). The purpose of this project is to determine how gold occurs in the Aurora zone. A three-day long campaign was therefore done at the processing plant at the Björkdal mine where 11 000 tonnes of ore from the drive Aurora 370/1650 E+W were processed. The issue regarding the ore from the Aurora zone is that it has a lower recovery compared to the rest of the mine.  Six chip samples, 12 samples from the ingoing plant feed and two tailing samples were analyzed using optical microscopy, scanning electron microscopy (SEM), and automated mineralogy (QEMSCAN). This was done to determine the mineralogy, grain size distribution, mineral associations, textures and modal mineralogy which all are factors that could influence the metal recovery at the processing plant. The samples were prepared using the cold mounting method and epoxy mounts were created. After cutting, grinding, and polishing, the sections were ready to be examined. Optical microscopy was performed using a Nikon ECLIPSE E600 POL microscope. Ten epoxy mounts were carbon coated and automated mineralogy was performed on nine of them in a ZEISS Sigma 300 VP using a recipe (analysis mode) for “bright phase search”. Manual point-ID analysis was done using a ZEISS MERLIN SEM. Fifty gold grains were identified in this study, 48 of them in the chip samples and two of them in the ingoing-feed samples. 64% of them were associated with silicates, 22% were quartz associated, 12% were associated with bismuth minerals and 2% of them were associated with sulfides. The grain size distribution has a range between 0.7 and 19 μm and the median grain size is 4.8 μm. The gold grains identified from the Aurora zone have a significantly smaller median grain size than gold from other parts of the mine. The majority of the gold grains identified in this study, have a very fine grain size, are mainly associated with silicates and most prominently occur as inclusions. Gold that occurs in this way is typically difficult to recover in the processing plant and it seems like this is the main reason for the lower gold recovery from the Aurora ore zone.  No gold was found in the tailings, suggesting that the mineral process is performing well although no thorough conclusion can be made in regards of the processing. The lack of data for the different sample types in this project is an issue. Gold from the tailings must be identified and examined to draw any clear conclusions regarding the processing. For future work, it is therefore recommended to analyze more tailing samples and to implement hydroseparation at the sample preparation stage, to separate the heavier gold particles from lighter minerals. Then more gold will most likely get detected in the tailing samples.
10

Evaluation of Nebulas Gold Deposit in Giyani Greenstone Belt, Limpopo Province, South Africa

Mavhungu, Mbofholowo Emmanuel 18 May 2018 (has links)
MESMEG / Department of Mining and Environmental Geology / Giyani Greenstone Belt is known to host significant amount of gold of which about 10 tonnes were extracted from the belt in the 19th century. Due to increased gold price and mining practices that make it economic to mine low-grade ore deposits, major gold deposits within the belt have been the main targets for exploration while Nebulas Prospect remain unnoticed. To make the Nebulas Prospect attractive for investment, its gold mineralization potential needed to be investigated. The main purpose of this study was to conduct assessment of the probable gold mineralization in the Nebulas Prospect and its economic viability. The specific objectives were to establish the gold mineralized zones within the Nebulas Prospect, develop a geological model showing the geometry and placement of gold in the subsurface, establish gold grade distribution and its economic implication, and select the most appropriate and practical mining method for exploitation of the established gold deposit. The research approaches used in achieving these objectives comprised of knowledge driven predictive modelling of Nebulas Prospect to derive prospectivity map demarcating the area with the potential of hosting gold mineralization. Magnetic survey was conducted in geological permissive areas, thereby establishing boundaries of mineralization, both lateral and vertical. Geological and subsurface gold grade distribution were carried out by means of trenching and pitting. The integration of the geological, geophysical and geochemical data using Geosoft 8.5 and ArcGIS 10.5 assisted in development of a gold deposit model that model illustrates distribution and concentration of gold. Results of the investigation reveals that Banded Iron Formation (BIF) dominates the southern part of the study area while quartz vein and schist dominate the northern part. The application of knowledge driven predictive modelling established mineral prospectivity map for Nebulas Prospect, which narrowed the potential area for further investigation. The area located outside the boundary of prospective area indicated low mineralization potential compared to highly mineralized zone within geological permissive boundary. The two mineralize zones which exits in the Nebulas Prospect are separated by pegmatite intrusion which is observed from magnetic data presentation. The gold is hosted within BIF, schist and quartz vein. The highest concentration observed value of 10.65 g/t is hosted in serpentine schist and lowest significant of 1.24 g/t in BIF. The gold grades are higher in schists than in BIF and quartz veins. The Nebulas Prospect present significant measured iv gold mineral resource with substantial economic potential. The evaluation of the technical aspects of the Nebulas Gold Deposit, which include grade and tonnage was estimated through longitudinal vertical section method. The gold hosted within Banded Iron Formation (BIF) comprise a measured gold resource of 6957.6 t at an average weighted grade of 2.22 g/t Au. However, the gold mineralization hosted within tremolite-mica schist, serpentine schist and quartz veins comprise a measured gold resource of 3919.37 t with average grade of 3.8 g/t Au. The Nebulas Gold Deposit contain a significant grade and tonnage. At an assumed currently economically mineable cutoff grade 1 g/t Au, Nebulas Prospect has a measured resource of 10877 t at a weighted average grade of 2.79 g/t Au. Analytical hierarchy process (AHP) was used to prioritize the factors affecting mining method selection and ranking of potential mining method, technically appropriate for the established gold deposit in Nebulas Prospect. Open pit mining method was identified as appropriated for extraction of the Nebulas Gold Deposit. / NRF

Page generated in 0.0626 seconds